# Esquemas piramidales y porqué deberíamos pagar menos por las naranjas

Diego Martínez Magán

6 de Junio de 2018

Instituto de Ciencias Matemáticas - Universidad Carlos III de Madrid lumartin@math.uc3m.es luisdiego.martinez@icmat.es

• 3 tipos de presentaciones:

- 3 tipos de presentaciones:
  - 1. Inteligentes
  - 2. Graciosas
  - 3. Bonitas

- 3 tipos de presentaciones:
  - 1. Inteligentes
  - 2. Graciosas
  - 3. Bonitas

Y bien bonicas que son las trasparencias

- 3 tipos de presentaciones:
  - 1. Inteligentes
  - 2. Graciosas
  - 3. Bonitas

Y bien bonicas que son las trasparencias

• Todo es cierto...

- 3 tipos de presentaciones:
  - 1. Inteligentes
  - 2. Graciosas
  - 3. Bonitas

Y bien bonicas que son las trasparencias

• Todo es cierto... Salvo alguna cosa

- 3 tipos de presentaciones:
  - 1. Inteligentes
  - 2. Graciosas
  - 3. Bonitas

Y bien bonicas que son las trasparencias

- Todo es cierto... Salvo alguna cosa
- El Axioma de Elección es bueno

#### Overview

Esquemas Piramidales y de Ponzi

Paradojicidad en grupos

Conjuntos no medibles

Paradojicidad

Paradoja de Banach-Tarski

Amenabilidad y von Neumann

Naranjas vs. Estafas

Esquemas Piramidales y de Ponzi

Figure 1: Charles Ponzi (1882 - 1949)



Figure 1: Charles Ponzi (1882 - 1949)



Idea: dar dinero y recibir más dinero rápido

Figure 1: Charles Ponzi (1882 - 1949)



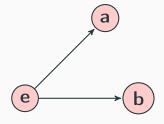
Idea: dar dinero y recibir más dinero rápido (=  $\$ \rightsquigarrow 0 \rightsquigarrow \$\$$ )

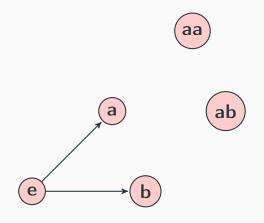


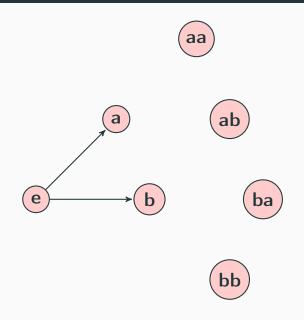
(a)

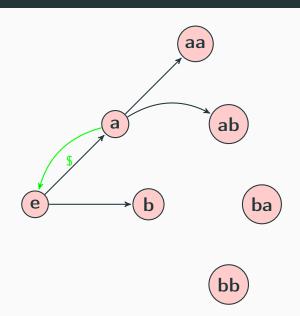
(e)

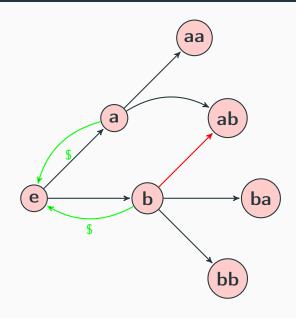
(b)

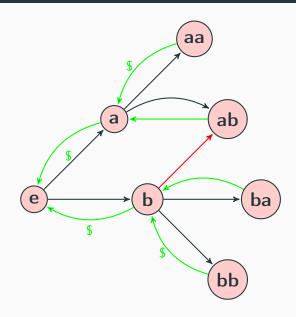


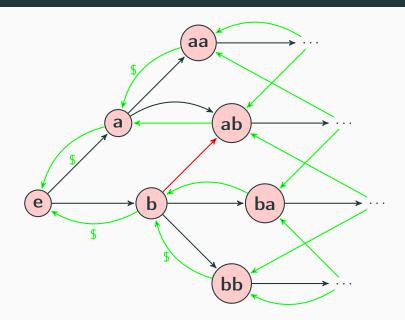


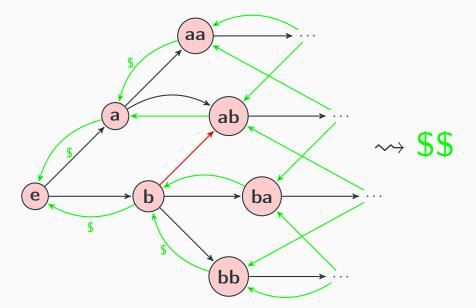








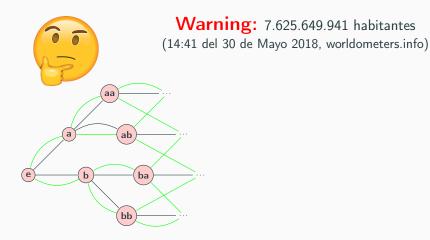


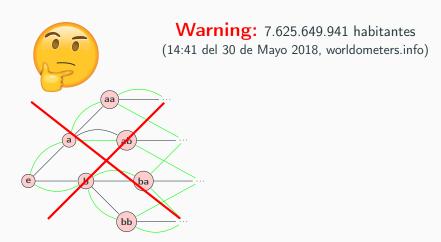


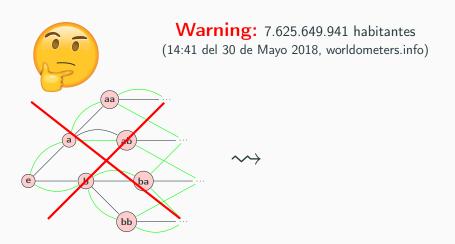


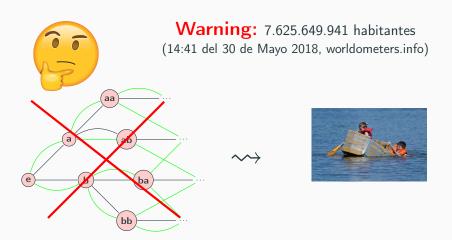


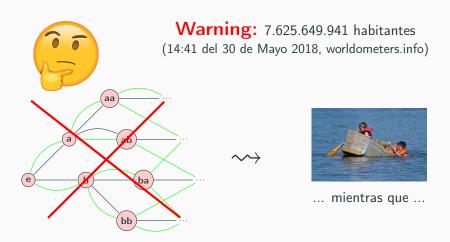
Warning: 7.625.649.941 habitantes (14:41 del 30 de Mayo 2018, worldometers.info)













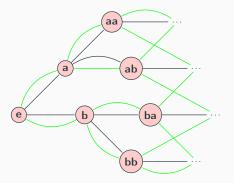


... mientras que ...

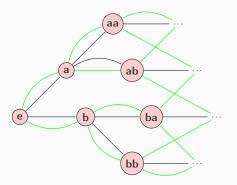


 $\bullet$  ¿Y si hubiera  $\infty$  personas en La Tierra? Entonces...

 $\bullet$  ¿Y si hubiera  $\infty$  personas en La Tierra? Entonces...

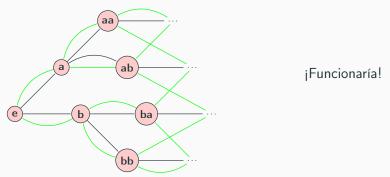


•  $\xi Y$  si hubiera  $\infty$  personas en La Tierra? Entonces...

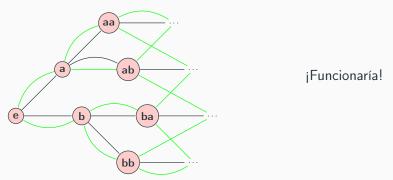


¡Funcionaría!

ullet Y si hubiera  $\infty$  personas en La Tierra? Entonces...



• ¿Y si la gente no se conociera así? Entonces...

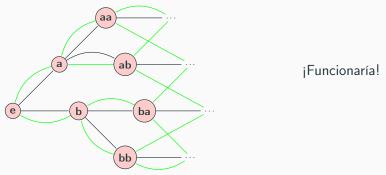


• ¿Y si la gente no se conociera así? Entonces...



# Y si...?

• ¿Y si hubiera ∞ personas en La Tierra? Entonces...



• ¿Y si la gente no se conociera así? Entonces...



podría ser que sólo e ganara...

## Definición

Esquema piramidal exitoso en (V, E) loc. aco. es  $\phi: V \to V$ :

#### Definición

Esquema piramidal exitoso en (V, E) loc. aco. es  $\phi : V \rightarrow V$ :

1. Si  $w \in V$  entonces  $|\phi^{-1}(w)| \ge 2$ .

#### Definición

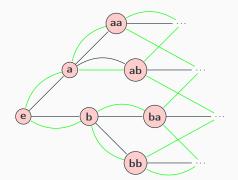
Esquema piramidal exitoso en (V, E) loc. aco. es  $\phi: V \to V$ :

- 1. Si  $w \in V$  entonces  $|\phi^{-1}(w)| \ge 2$ .
- 2.  $(v, \phi(v)) \in E$  para todo  $v \in V$ .

## Definición

Esquema piramidal exitoso en (V, E) loc. aco. es  $\phi: V \to V$ :

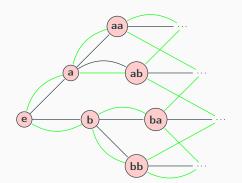
- 1. Si  $w \in V$  entonces  $|\phi^{-1}(w)| \ge 2$ .
- 2.  $(v, \phi(v)) \in E$  para todo  $v \in V$ .



#### Definición

Esquema piramidal exitoso en (V, E) loc. aco. es  $\phi: V \to V$ :

- 1. Si  $w \in V$  entonces  $|\phi^{-1}(w)| \ge 2$ .
- 2.  $(v, \phi(v)) \in E$  para todo  $v \in V$ .

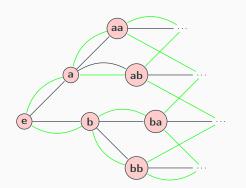


VS.

#### **Definición**

Esquema piramidal exitoso en (V, E) loc. aco. es  $\phi: V \to V$ :

- 1. Si  $w \in V$  entonces  $|\phi^{-1}(w)| \ge 2$ .
- 2.  $(v, \phi(v)) \in E$  para todo  $v \in V$ .





# Ponzi & los esquemas piramidales ${\rm IV}$

## **Observaciones:**

1.  $\mathcal{K}_n$  no tiene un esquema piramidal exitoso.

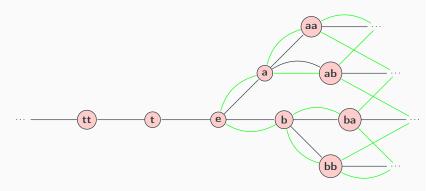
# Ponzi & los esquemas piramidales ${\rm IV}$

## Observaciones:

- 1.  $\mathcal{K}_n$  no tiene un esquema piramidal exitoso.
- 2.  $|V| < \infty \rightsquigarrow (V, E)$  no tiene un esquema piramidal exitoso.

#### **Observaciones:**

- 1.  $\mathcal{K}_n$  no tiene un esquema piramidal exitoso.
- 2.  $|V| < \infty \rightsquigarrow (V, E)$  no tiene un esquema piramidal exitoso.
- 3. Existen "esquemas exitosos parciales":



**Figure 2:** Henri Léon Lebesgue (1875-1941)



**Figure 3:** Giuseppe Vitali (1875-1932)



**Figure 2:** Henri Léon Lebesgue (1875-1941)



Idea: medir conjuntos en  $\mathbb R$ 

**Figure 3:** Giuseppe Vitali (1875-1932)



**Figure 2:** Henri Léon Lebesgue (1875-1941)



**Idea:** medir conjuntos en  $\mathbb{R}$ 

**Figure 3:** Giuseppe Vitali (1875-1932)



Idea: no podemos medirlo todo

#### Definición

La medida de Lebesgue es  $\lambda:\mathcal{L}\left(\subset\mathcal{P}\left(\left[0,1\right]\right)\right)
ightarrow\left[0,1\right]$ 

$$\lambda(E) = \inf \left\{ \sum_{i=1}^{\infty} \ell(I_i) : I_i \text{ intervalos y } E \subset \bigcup_{i=1}^{\infty} I_i \right\}$$

#### Definición

La medida de Lebesgue es  $\lambda:\mathcal{L}\left(\subset\mathcal{P}\left(\left[0,1\right]\right)\right)\to\left[0,1\right]$ 

$$\lambda\left(E\right)=\inf\left\{ \sum_{i=1}^{\infty}\ell\left(I_{i}\right):I_{i}\text{ intervalos y }E\subset\cup_{i=1}^{\infty}I_{i}
ight\}$$

## Propiedades:

- 1. Normalización:  $\lambda(\emptyset) = 0$  y  $\lambda([0,1]) = 1$ .
- 2.  $\sigma$ -aditividad:  $\lambda\left(\sqcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}\lambda\left(A_{i}\right)$ .
- 3. Invariancia:  $\lambda(r+E) = \lambda(E)$ .

#### Definición

La medida de Lebesgue es  $\lambda : \mathcal{L} (\subset \mathcal{P} ([0,1])) \to [0,1]$ 

$$\lambda\left(E\right)=\inf\left\{\sum_{i=1}^{\infty}\ell\left(I_{i}\right):I_{i}\text{ intervalos y }E\subset\cup_{i=1}^{\infty}I_{i}\right\}$$

## Propiedades:

- 1. Normalización:  $\lambda(\emptyset) = 0$  y  $\lambda([0,1]) = 1$ .
- 2.  $\sigma$ -aditividad:  $\lambda(\bigsqcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \lambda(A_i)$ .
- 3. Invariancia:  $\lambda(r+E) = \lambda(E)$ .
- 4. Warning:  $\mathcal{L} \subsetneq \mathcal{P}([0,1])$ .

4. **vvarning:** 
$$\mathcal{L} \subsetneq \mathcal{P}([0,1])$$
.

$$\mathbb{Q} \triangleleft \mathbb{R} \, \rightsquigarrow \, \mathbb{R}/\mathbb{Q} \, \rightsquigarrow \, V = \{1 \text{ representante de cada } [0,1] \, / \, [0,1] \cap \mathbb{Q}$$
 
$$1 = \lambda \left( [0,1] \right) \leq \lambda \left( \sqcup_{q \in \mathbb{Q}} V + q \right) = \sum \lambda \left( V + q \right) = \sum \lambda \left( V \right) \leq 3$$

#### Definición

La medida de Lebesgue es  $\lambda : \mathcal{L} (\subset \mathcal{P} ([0,1])) \rightarrow [0,1]$ 

$$\lambda(E) = \inf \left\{ \sum_{i=1}^{\infty} \ell(I_i) : I_i \text{ intervalos y } E \subset \bigcup_{i=1}^{\infty} I_i \right\}$$

## Propiedades:

- 1. Normalización:  $\lambda(\emptyset) = 0$  y  $\lambda([0,1]) = 1$ .
- 2.  $\sigma$ -aditividad:  $\lambda \left( \bigsqcup_{i=1}^{\infty} A_i \right) = \sum_{i=1}^{\infty} \lambda \left( A_i \right)$ .
- 3. Invariancia:  $\lambda(r+E) = \lambda(E)$ .
- 4. Warning:  $\mathcal{L} \subsetneq \mathcal{P}([0,1])$ .

4. **vvarning:** 
$$\mathcal{L} \subsetneq \mathcal{P}([0,1])$$

$$\mathbb{Q} \triangleleft \mathbb{R} \rightsquigarrow \mathbb{R}/\mathbb{Q} \rightsquigarrow V = \{1 \text{ representante de cada } [0,1] / [0,1] \cap \mathbb{Q} \}$$

#### **Definición**

G (grupo discreto contable) es <u>paradójico</u> si existen  $A_1,\ldots,A_n,B_1,\ldots,B_m\subset G$  y  $g_1,\ldots,g_n,h_1,\ldots,h_m\in G$  tales que:

- 1.  $G \supset A_1 \sqcup \cdots \sqcup A_n \sqcup B_1 \sqcup \cdots \sqcup B_m$ .
- 2.  $G = g_1A_1 \cup \cdots \cup g_nA_n = h_1B_1 \cup \cdots \cup h_mB_m$ .

#### Definición

G (grupo discreto contable) es <u>paradójico</u> si existen  $A_1,\ldots,A_n,B_1,\ldots,B_m\subset G$  y  $g_1,\ldots,g_n,h_1,\ldots,h_m\in G$  tales que:

- 1.  $G \supset A_1 \sqcup \cdots \sqcup A_n \sqcup B_1 \sqcup \cdots \sqcup B_m$ .
- 2.  $G = g_1 A_1 \cup \cdots \cup g_n A_n = h_1 B_1 \cup \cdots \cup h_m B_m$ .

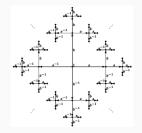
 $|\mathcal{G}|<\infty$  &  $\mathbb{Z}$  &  $\mathcal{G}$  abeliano no son paradójicos vs.  $\mathbb{F}_2$  sí lo es.

#### **Definición**

G (grupo discreto contable) es <u>paradójico</u> si existen  $A_1,\ldots,A_n,B_1,\ldots,B_m\subset G$  y  $g_1,\ldots,g_n,h_1,\ldots,h_m\in G$  tales que:

- 1.  $G \supset A_1 \sqcup \cdots \sqcup A_n \sqcup B_1 \sqcup \cdots \sqcup B_m$ .
- 2.  $G = g_1 A_1 \cup \cdots \cup g_n A_n = h_1 B_1 \cup \cdots \cup h_m B_m$ .

 $|G|<\infty$  &  $\mathbb{Z}$  & G abeliano no son paradójicos vs.  $\mathbb{F}_2$  sí lo es.

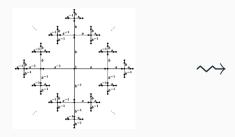


#### **Definición**

G (grupo discreto contable) es <u>paradójico</u> si existen  $A_1,\ldots,A_n,B_1,\ldots,B_m\subset G$  y  $g_1,\ldots,g_n,h_1,\ldots,h_m\in G$  tales que:

- 1.  $G \supset A_1 \sqcup \cdots \sqcup A_n \sqcup B_1 \sqcup \cdots \sqcup B_m$ .
- 2.  $G = g_1 A_1 \cup \cdots \cup g_n A_n = h_1 B_1 \cup \cdots \cup h_m B_m$ .

 $|\mathcal{G}|<\infty$  &  $\mathbb{Z}$  &  $\mathcal{G}$  abeliano no son paradójicos vs.  $\mathbb{F}_2$  sí lo es.

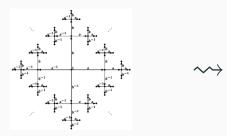


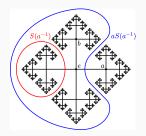
#### **Definición**

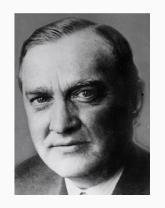
G (grupo discreto contable) es <u>paradójico</u> si existen  $A_1,\ldots,A_n,B_1,\ldots,B_m\subset G$  y  $g_1,\ldots,g_n,h_1,\ldots,h_m\in G$  tales que:

- 1.  $G \supset A_1 \sqcup \cdots \sqcup A_n \sqcup B_1 \sqcup \cdots \sqcup B_m$ .
- 2.  $G = g_1 A_1 \cup \cdots \cup g_n A_n = h_1 B_1 \cup \cdots \cup h_m B_m$ .

 $|G|<\infty$  &  $\mathbb{Z}$  & G abeliano no son paradójicos vs.  $\mathbb{F}_2$  sí lo es.

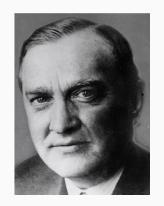
















Idea: (Banach & Tarski) debilitar  $\sigma$ -aditividad  $\leadsto$  ¿Conjuntos no medibles?

Observación:  $\mathbb{F}_2 \subset SO(3)$ :

$$\phi^{\pm 1} = \begin{pmatrix} \frac{1}{3} & \mp \frac{2\sqrt{2}}{3} & 0\\ \pm \frac{2\sqrt{2}}{3} & \frac{1}{3} & 0\\ 0 & 0 & 1 \end{pmatrix} & \& \quad \psi^{\pm 1} = \begin{pmatrix} 1 & 0 & 0\\ 0 & \frac{1}{3} & \pm \frac{2\sqrt{2}}{3}\\ 0 & \mp \frac{2\sqrt{2}}{3} & \frac{1}{3} \end{pmatrix}$$

Observación:  $\mathbb{F}_2 \subset SO(3)$ :

$$\phi^{\pm 1} = \begin{pmatrix} \frac{1}{3} & \mp \frac{2\sqrt{2}}{3} & 0\\ \pm \frac{2\sqrt{2}}{3} & \frac{1}{3} & 0\\ 0 & 0 & 1 \end{pmatrix} & \& \quad \psi^{\pm 1} = \begin{pmatrix} 1 & 0 & 0\\ 0 & \frac{1}{3} & \pm \frac{2\sqrt{2}}{3}\\ 0 & \mp \frac{2\sqrt{2}}{3} & \frac{1}{3} \end{pmatrix}$$

Por tanto:  $\mathbb{F}_2$  es paradójico &  $\mathbb{F}_2 \curvearrowright \mathbb{S}^2$ .

#### Lema

G paradójico &  $G \curvearrowright X$  sin puntos fijos  $\Rightarrow X$  G-paradójico.

Proposición (Paradoja de Hausdorff)

Observación:  $\mathbb{F}_2 \subset SO(3)$ :

$$\phi^{\pm 1} = \begin{pmatrix} \frac{1}{3} & \mp \frac{2\sqrt{2}}{3} & 0\\ \pm \frac{2\sqrt{2}}{3} & \frac{1}{3} & 0\\ 0 & 0 & 1 \end{pmatrix} & \& \quad \psi^{\pm 1} = \begin{pmatrix} 1 & 0 & 0\\ 0 & \frac{1}{3} & \pm \frac{2\sqrt{2}}{3}\\ 0 & \mp \frac{2\sqrt{2}}{3} & \frac{1}{3} \end{pmatrix}$$

Por tanto:  $\mathbb{F}_2$  es paradójico &  $\mathbb{F}_2 \curvearrowright \mathbb{S}^2$ .

#### Lema

G paradójico &  $G \curvearrowright X$  sin puntos fijos  $\Rightarrow X$  G-paradójico.

## Proposición (Paradoja de Hausdorff)

 $\exists D \subset \mathbb{S}^2$  contable con  $\mathbb{S}^2 \setminus D$  SO (3)-paradójico.

Observación:  $\mathbb{F}_2 \subset SO(3)$ :

$$\phi^{\pm 1} = \begin{pmatrix} \frac{1}{3} & \mp \frac{2\sqrt{2}}{3} & 0\\ \pm \frac{2\sqrt{2}}{3} & \frac{1}{3} & 0\\ 0 & 0 & 1 \end{pmatrix} \quad \& \quad \psi^{\pm 1} = \begin{pmatrix} 1 & 0 & 0\\ 0 & \frac{1}{3} & \pm \frac{2\sqrt{2}}{3}\\ 0 & \mp \frac{2\sqrt{2}}{3} & \frac{1}{3} \end{pmatrix}$$

Por tanto:  $\mathbb{F}_2$  es paradójico &  $\mathbb{F}_2 \curvearrowright \mathbb{S}^2$ .

#### Lema

G paradójico &  $G \curvearrowright X$  sin puntos fijos  $\Rightarrow X$  G-paradójico.

## Proposición (Paradoja de Hausdorff)

 $\exists \ D \subset \mathbb{S}^2$  contable con  $\mathbb{S}^2 \setminus D$  SO(3)-paradójico.

Prueba (sketch): 
$$F:=$$
 puntos fijos de  $\mathbb{F}_2 \curvearrowright \mathbb{S}^2$   
 $\leadsto D:= \cup_{w \in \mathbb{F}_2} wF + \text{Lema}.$ 

## Teorema (Paradoja de Banach-Tarski)

 $\mathbb{B}\left(0,1\right)\subset\mathbb{R}^{3}$  es SO (3)-paradójica.

## Teorema (Paradoja de Banach-Tarski)

 $\mathbb{B}(0,1)\subset\mathbb{R}^3$  es SO (3)-paradójica.

## Prueba (sketch):

BT = Paradoja de Hausdorff

- + "conjuntos finitos no importan en la descomposición"
- + conos a partir de la descomposición en la superficie

## Teorema (Paradoja de Banach-Tarski)

 $\mathbb{B}(0,1)\subset\mathbb{R}^3$  es SO (3)-paradójica.

## Prueba (sketch):

BT = Paradoja de Hausdorff

- + "conjuntos finitos no importan en la descomposición"
- + conos a partir de la descomposición en la superficie



Observaciones:

#### Observaciones:

1. Paradoja fuerte  $\leadsto$  todo  $A \subset \mathbb{R}^3$  con interior  $\neq \emptyset$  es SO (3)-paradójico.

#### Observaciones:

- 1. Paradoja *fuerte*  $\leadsto$  todo  $A \subset \mathbb{R}^3$  con interior  $\neq \emptyset$  es SO (3)-paradójico.
- 2. Existen conjuntos  $\subset \mathbb{R}^3$  no medibles (¡incluso sin  $\sigma$ -aditividad!)

#### Observaciones:

- 1. Paradoja fuerte  $\leadsto$  todo  $A \subset \mathbb{R}^3$  con interior  $\neq \emptyset$  es SO (3)-paradójico.
- 2. Existen conjuntos  $\subset \mathbb{R}^3$  no medibles (¡incluso sin  $\sigma$ -aditividad!)
- 3.  $n > 3 \rightsquigarrow$  misma prueba  $\rightsquigarrow$  conjuntos no medibles.

## Banach-Tarski & Hausdorff IV

#### Observaciones:

- 1. Paradoja *fuerte*  $\leadsto$  todo  $A \subset \mathbb{R}^3$  con interior  $\neq \emptyset$  es SO (3)-paradójico.
- 2. Existen conjuntos  $\subset \mathbb{R}^3$  no medibles (¡incluso  $\sin \sigma$ -aditividad!)
- 3.  $n > 3 \rightsquigarrow$  misma prueba  $\rightsquigarrow$  conjuntos no medibles.
- 4.  $n = 1, 2 \rightsquigarrow SO(n)$  abeliano  $\rightsquigarrow$  bola no paradójica.

## Banach-Tarski & Hausdorff IV

#### Observaciones:

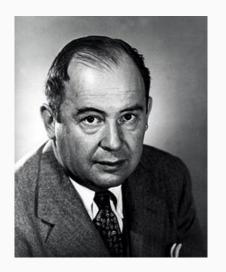
- 1. Paradoja *fuerte*  $\leadsto$  todo  $A \subset \mathbb{R}^3$  con interior  $\neq \emptyset$  es SO (3)-paradójico.
- 2. Existen conjuntos  $\subset \mathbb{R}^3$  no medibles (¡incluso  $\sin \sigma$ -aditividad!)
- 3.  $n > 3 \rightsquigarrow$  misma prueba  $\rightsquigarrow$  conjuntos no medibles.
- 4.  $n = 1, 2 \rightsquigarrow SO(n)$  abeliano  $\rightsquigarrow$  bola no paradójica.
- 5.  $n = 1, 2 \rightsquigarrow$  existen medidas totales extendiendo Lebesgue.

Amenabilidad y von Neumann

# von Neumann



#### von Neumann



**Idea:** Banach-Tarski vs. Medidas  $\mu: \mathcal{P}(G) \rightarrow [0,1]$ .

#### Definición

Una medida de probabilidad invariante es  $\mu: \mathcal{P}\left(\mathcal{G}\right) \rightarrow [0,1]$  cumpliendo:

- 1. Normalización:  $\mu(G) = 1$ .
- 2. Aditividad finita:  $\mu(A \sqcup B) = \mu(A) + \mu(B)$ .
- 3. Invariancia:  $\mu(gA) = \mu(A)$ .

G es <u>amenable</u> si tiene una medida de probabilidad invariante.

#### Definición

Una medida de probabilidad invariante es  $\mu: \mathcal{P}\left(\mathcal{G}\right) \rightarrow [0,1]$  cumpliendo:

- 1. Normalización:  $\mu(G) = 1$ .
- 2. Aditividad finita:  $\mu(A \sqcup B) = \mu(A) + \mu(B)$ .
- 3. Invariancia:  $\mu(gA) = \mu(A)$ .

G es <u>amenable</u> si tiene una medida de probabilidad invariante.

Ejemplos: G finito &  $\mathbb{Z} \rightsquigarrow \mu(A) = \lim_{n \to \omega} |A \cap [-n, n]| / 2n + 1$ .

#### Definición

Una medida de probabilidad invariante es  $\mu:\mathcal{P}\left(\mathcal{G}\right)\rightarrow\left[0,1\right]$  cumpliendo:

- 1. Normalización:  $\mu(G) = 1$ .
- 2. Aditividad finita:  $\mu(A \sqcup B) = \mu(A) + \mu(B)$ .
- 3. Invariancia:  $\mu(gA) = \mu(A)$ .

G es <u>amenable</u> si tiene una medida de probabilidad invariante.

Ejemplos: G finito &  $\mathbb{Z} \rightsquigarrow \mu(A) = \lim_{n \to \omega} |A \cap [-n, n]| / 2n + 1$ .

No ejemplo:  $\mathbb{F}_2 \rightsquigarrow A := S(a) \cup S(a^{-1}) \rightsquigarrow$ 

#### Definición

Una medida de probabilidad invariante es  $\mu: \mathcal{P}(G) \rightarrow [0,1]$  cumpliendo:

- 1. Normalización:  $\mu(G) = 1$ .
- 2. Aditividad finita:  $\mu(A \sqcup B) = \mu(A) + \mu(B)$ .
- 3. Invariancia:  $\mu(gA) = \mu(A)$ .

G es <u>amenable</u> si tiene una medida de probabilidad invariante.

Ejemplos: G finito &  $\mathbb{Z} \rightsquigarrow \mu(A) = \lim_{n \to \omega} |A \cap [-n, n]| / 2n + 1$ .

No ejemplo:  $\mathbb{F}_2 \rightsquigarrow A := S\left(a\right) \cup S\left(a^{-1}\right) \rightsquigarrow$ 

- 1.  $A \cup aA = \mathbb{F}_2 \rightsquigarrow \mu(A) \geq 1/2$ .
- 2.  $A, bA, b^2A$  son disjuntos  $\rightsquigarrow \mu(A) \le 1/3$ .

## Teorema (Banach-Tarski, von Neumann)

G grupo discreto, finitamente generado. LSASE:

- 1. *G* es paradójico.
- 2. G no es amenable.
- 3. Existe  $K \subset G$  finito tal que Cay (G, K) tiene un EPE.

# Teorema (Banach-Tarski, von Neumann)

G grupo discreto, finitamente generado. LSASE:

- 1. *G* es paradójico.
- 2. G no es amenable.
- 3. Existe  $K \subset G$  finito tal que Cay (G, K) tiene un EPE.

## Teorema (Banach-Tarski, von Neumann)

G grupo discreto, finitamente generado. LSASE:

- 1. G es paradójico.
- 2. G no es amenable.
- 3. Existe  $K \subset G$  finito tal que Cay (G, K) tiene un EPE.

$$\underline{3}\Rightarrow\underline{1}$$
. Escoger  $\psi_{i}$  tal que  $\phi\left(\psi_{i}\left(g\right)\right)=g\left(i=1,2\right)\leadsto$  para  $k\in\mathcal{K}$ 

$$A_k = \{g \in G : \psi_1(g)g^{-1} = k\}$$
 &  $B_k = \{g \in G : \psi_2(g)g^{-1} = k\}$ .

### Teorema (Banach-Tarski, von Neumann)

G grupo discreto, finitamente generado. LSASE:

- 1. G es paradójico.
- 2. G no es amenable.
- 3. Existe  $K \subset G$  finito tal que Cay (G, K) tiene un EPE.

$$3 \Rightarrow 1$$
. Escoger  $\psi_i$  tal que  $\phi(\psi_i(g)) = g(i = 1, 2) \rightsquigarrow \text{ para } k \in K$ 

$$A_k = \left\{ g \in G : \psi_1(g) g^{-1} = k \right\} \quad \& \quad B_k = \left\{ g \in G : \psi_2(g) g^{-1} = k \right\}.$$

$$\to (g, \phi(g)) \in E$$

### Teorema (Banach-Tarski, von Neumann)

G grupo discreto, finitamente generado. LSASE:

- 1. G es paradójico.
- 2. G no es amenable.
- 3. Existe  $K \subset G$  finito tal que Cay (G, K) tiene un EPE.

$$\underline{3} \Rightarrow \underline{1}$$
. Escoger  $\psi_i$  tal que  $\phi(\psi_i(g)) = g(i = 1, 2) \rightsquigarrow \text{ para } k \in K$ 

$$A_k = \left\{ g \in G : \psi_1(g) g^{-1} = k \right\} \quad \& \quad B_k = \left\{ g \in G : \psi_2(g) g^{-1} = k \right\}.$$

$$\to (g, \phi(g)) \in E \rightsquigarrow \psi_i(g) g^{-1} \in K$$

### Teorema (Banach-Tarski, von Neumann)

G grupo discreto, finitamente generado. LSASE:

- 1. G es paradójico.
- 2. G no es amenable.
- 3. Existe  $K \subset G$  finito tal que Cay (G, K) tiene un EPE.

$$\underline{3} \Rightarrow \underline{1}$$
. Escoger  $\psi_i$  tal que  $\phi(\psi_i(g)) = g(i = 1, 2) \rightsquigarrow \text{ para } k \in K$ 

$$A_k = \left\{ g \in G : \psi_1(g) g^{-1} = k \right\} \quad \& \quad B_k = \left\{ g \in G : \psi_2(g) g^{-1} = k \right\}.$$

$$\rightarrow (g, \phi(g)) \in E \rightsquigarrow \psi_i(g) g^{-1} \in K \rightsquigarrow G = \sqcup_{k \in K} A_k = \sqcup_{k \in K} B_k.$$

### Teorema (Banach-Tarski, von Neumann)

G grupo discreto, finitamente generado. LSASE:

- 1. G es paradójico.
- 2. G no es amenable.
- 3. Existe  $K \subset G$  finito tal que Cay (G, K) tiene un EPE.

$$\begin{array}{l} \underline{3\Rightarrow 1}. \ \, \mathsf{Escoger} \ \psi_i \ \, \mathsf{tal} \ \, \mathsf{que} \ \, \phi\left(\psi_i\left(g\right)\right) = g\left(i=1,2\right) \leadsto \mathsf{para} \ \, k \in K \\ \\ A_k = \left\{g \in G : \psi_1\left(g\right)g^{-1} = k\right\} \quad \& \quad B_k = \left\{g \in G : \psi_2\left(g\right)g^{-1} = k\right\}. \\ \\ \to \left(g,\phi\left(g\right)\right) \in E \leadsto \psi_i\left(g\right)g^{-1} \in K \leadsto \underline{G = \sqcup_{k \in K} A_k = \sqcup_{k \in K} B_k}. \\ \\ \to \sqcup_{k \in K} kA_k = \psi_1\left(G\right) \\ \to \sqcup_{k \in K} kB_k = \psi_2\left(G\right) \end{array} \right\} \ \, \leadsto \underline{\ \, \sqcup_{k \in K} \left(kA_k \sqcup kB_k\right) \subset G.}$$

 $1 \Rightarrow 2$ . Si fuera paradójico y amenable:

$$1 = \mu(G) \ge \sum_{i=1}^{n} \mu(A_i) + \sum_{j=1}^{n} \mu(B_j)$$
$$= \sum_{i=1}^{n} \mu(g_i A_i) + \sum_{j=1}^{n} \mu(h_j B_j) \ge \mu(G) + \mu(G) = 2.$$

 $1 \Rightarrow 2$ . Si fuera paradójico y amenable:

$$1 = \mu(G) \ge \sum_{i=1}^{n} \mu(A_i) + \sum_{j=1}^{n} \mu(B_j)$$
$$= \sum_{i=1}^{n} \mu(g_i A_i) + \sum_{j=1}^{n} \mu(h_j B_j) \ge \mu(G) + \mu(G) = 2.$$

 $1 \Rightarrow 2$ . Si fuera paradójico y amenable:

$$1 = \mu(G) \ge \sum_{i=1}^{n} \mu(A_i) + \sum_{j=1}^{n} \mu(B_j)$$
$$= \sum_{i=1}^{n} \mu(g_i A_i) + \sum_{j=1}^{n} \mu(h_j B_j) \ge \mu(G) + \mu(G) = 2.$$

$$\rightsquigarrow$$
 existe  $e \in K \subset G$  con  $|KF| \ge 2|F|$ 

 $1 \Rightarrow 2$ . Si fuera paradójico y amenable:

$$1 = \mu(G) \ge \sum_{i=1}^{n} \mu(A_i) + \sum_{j=1}^{n} \mu(B_j)$$
$$= \sum_{i=1}^{n} \mu(g_i A_i) + \sum_{j=1}^{n} \mu(h_j B_j) \ge \mu(G) + \mu(G) = 2.$$

$$\rightarrow$$
 existe  $e \in K \subset G$  con  $|KF| \ge 2|F|$   
+ Hall harem Theorem

 $1 \Rightarrow 2$ . Si fuera paradójico y amenable:

$$1 = \mu(G) \ge \sum_{i=1}^{n} \mu(A_i) + \sum_{j=1}^{n} \mu(B_j)$$
$$= \sum_{i=1}^{n} \mu(g_i A_i) + \sum_{j=1}^{n} \mu(h_j B_j) \ge \mu(G) + \mu(G) = 2.$$

$$ightharpoonup \operatorname{existe} e \in K \subset G \operatorname{con} |KF| \geq 2 |F| + \operatorname{Hall harem Theorem}$$
 $ightharpoonup \operatorname{etiquetas} \left\{ g_{(t,i)} \right\}_{(t,i) \in G \times \{1,2\}}$ 

 $1 \Rightarrow 2$ . Si fuera paradójico y amenable:

$$1 = \mu(G) \ge \sum_{i=1}^{n} \mu(A_i) + \sum_{j=1}^{n} \mu(B_j)$$
$$= \sum_{i=1}^{n} \mu(g_i A_i) + \sum_{j=1}^{n} \mu(h_j B_j) \ge \mu(G) + \mu(G) = 2.$$

$$\begin{array}{l} \leadsto \text{ existe } e \in \mathcal{K} \subset G \text{ con } |\mathcal{K}F| \geq 2\,|F| \\ \qquad + \text{ Hall harem Theorem} \\ \\ \leadsto \text{ etiquetas } \left\{g_{(t,i)}\right\}_{(t,i) \in G \times \{1,2\}} \\ \\ \leadsto \psi_i\left(t\right) := g_{(t,i)} \quad \& \quad \phi = \psi_1^{-1} \sqcup \psi_2^{-1} \sqcup \text{ resto.} \end{array}$$

 $1 \Rightarrow 2$ . Si fuera paradójico y amenable:

$$1 = \mu(G) \ge \sum_{i=1}^{n} \mu(A_i) + \sum_{j=1}^{n} \mu(B_j)$$
$$= \sum_{i=1}^{n} \mu(g_i A_i) + \sum_{j=1}^{n} \mu(h_j B_j) \ge \mu(G) + \mu(G) = 2.$$

 $2 \Rightarrow 3$ . No amenable

$$\begin{array}{l} \leadsto \text{ existe } e \in \mathcal{K} \subset G \text{ con } |\mathcal{K}F| \geq 2\,|F| \\ \qquad + \text{ Hall harem Theorem} \\ \\ \leadsto \text{ etiquetas } \left\{ g_{(t,i)} \right\}_{(t,i) \in G \times \{1,2\}} \\ \\ \leadsto \psi_i(t) := g_{(t,i)} \quad \& \quad \phi = \psi_1^{-1} \sqcup \psi_2^{-1} \sqcup \text{ resto.} \end{array}$$

**Ejercicio:** Completar los detalles.

# ¡Eso es todo, amigos!



¡Muchas tardes y buenas gracias!

¿Preguntas?