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Overview

(1) Crash Course on Coarse Geometry

Shifting the point of view of geometry & examples

Properties at infinity

More examples?

(2) Inverse semigroups

Definition & examples

The Cayley graph of an inverse semigroup

Amenability in inverse semigroups

(3) Relation with Operator Algebras

Introduction to uniform Roe algebras
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(1) Crash Course on Coarse
Geometry



An introduction to coarse geometry

Recall: usual approach to (differential) geometry:

• Manifolds ↝ object of study.

• A manifold looks like Rn locally.

• Manifolds ↝ glue together patches of Rn.

Remark: M ≅ N iff there is φ∶M → N respecting those Rn patches.

Coarse idea: local properties ↝ global properties.

Definition

(X ,dX ), (Y ,dY ). Then: φ ∶ X → Y is a quasi-isometry if:
(1) There are L,C > 0 such that

1
LdX (x , x ′) − C ≤ dY (φ (x) , φ (x ′)) ≤ LdX (x , x ′) + C .

(2) dY (y , φ (X )) ≤ R for some R > 0 and all y ∈ Y .
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Coarse geometry vs. local geometry I

Proposition

(X ,d) is quasi-isometric to a point ⇔ supx ,x ′∈X d (x , x ′) < ∞.

Proof:
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Coarse geometry vs. local geometry II

Remark: quasi-isometric is very weak...

But: ((0,1) ,d) /≅q.i. (R,d) ↝ Q.I. ≠ homeomorphic.

Example:

. . .. . .

. . .. . .

. . .. . .

. . .. . .

. . .. . .

Facts: from the above picture it follows that:
● id∶Z→ R is a quasi-isometry.
● R and R2 are not quasi-isometric.
● {(0, y) ∈ R2} ⊔ {(x ,0) ∈ R2} and R2 are not q.i.

Question: any other natural examples? Answer: Yes.
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A factory of examples

Recall: Cayley graph construction ↝ G = ⟨g±1
1 , . . . ,g±1

n ∣ relations ⟩:

● Graph ↝ Cay (G ,{g1, . . . ,gn}) ∶= (V ,E), where
● Vertices: V ∶= G .
● Edges: (x ,g±1

i x) ∈ E .

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

⋰

⋱

⋱

⋰

Z2
. . .. . . Z = ⟨±2,±3⟩
. . .. . . Z = ⟨±1⟩

Proposition
The large scale geometry of the Cayley graph of G

does not depend on the generators, i.e.,
Cay (G ,{g1, . . . ,gn}) ≅q.i. Cay (G ,{h1, . . . ,hm}).
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Properties at infinity

Okey... All of this is beautiful and everything... So... ?

Look into properties of a metric space:

1. Not invariant under quasi-isometry:
• Cardinality (recall compact ≅q.i. point).
• Degree of a vertex (number of generators of G ).

2. Invariant under quasi-isometry:
• Number of ends of X .
• Amenability of (X ,d).
• Property A of (X ,d).

For the rest: metric space is Cay (G), G finitely generated.
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Amenability

Definition (von Neumann ’29 & Følner ’57)

G is amenable if there is {Fn}n∈N, where ∅ ≠ Fn ⊂⊂ G and

∣g Fn ∩ Fn ∣
∣Fn ∣

n→∞ÐÐÐ→ 1 for all g ∈ G .

Examples:
● Amenable: finite, solvable, subexponential growth.
● Non-amenable: F2, SL (n,Z), infinite prop. (T) groups.

Proposition
Amenability is a quasi-isometry invariant:

If G ≡q.i . H and G amenable then H amenable.

Proof: Følner sets are preserved under quasi-isometry.
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Property A

Definition (Yu ’99)

G has A if for all ε,R > 0 there is ξ∶G → `1 (G) such that

1. ξg ≥ 0 and ∣∣ξg ∣∣1 = 1 for all g ∈ G .

2. There is C > 0 such that supp (ξg) ⊂ BC (g) for all g ∈ G .

3. ∣∣ξg − ξh∣∣1 ≤ ε for any g ,h ∈ G such that d (g ,h) ≤ R .

Examples:
● A: amenable groups and free groups... most things...
● Not-A: groups with expanders... Gromov (2003)...

74 pg... incomplete proof...

Remark: property A is a quasi-isometry invariant since it
allows translations of finite propagation.

Or, rather, is a global property.
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Remark: property A is a quasi-isometry invariant since it
allows translations of finite propagation.

Or, rather, is a global property.
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More examples?

Recall: examples of coarse structures ↝ Cay (G).

Remark: Those are not all of them:

N ∶ 0 1 2 3 4 5 6 7 8 . . .

● The half line N is not a Cayley graph.
● Not even quasi-isometric to any Cayley graph.
● Actually most graphs are not Cayley graphs.

Question: can we study more general coarse structures from a
group-like point of view?

Note: the group structure:
● Gives insight/tools into coarse geometry.
● Limited to Cayley graphs.

Answer: Using semigroups we can.
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(2) Inverse semigroups



Introduction to inverse semigroups I

S inverse semigroup:

for all s ∈ S there is a unique s∗ ∈ S
such that ss∗s = s and s∗ss∗ = s∗.

Example: I (X ) = {(s,A,B) ∣ A,B ⊂ X and s ∶A↔ B}.

• A = domain of s = Ds∗s

• B = range of s = Dss∗

• (t,A,B) ○ (s,C ,D) ∶= (ts, s−1 (D ∩A) , t (D ∩A)).

Actually: S ⊂ I (X ) as inverse semigroups ↝ s ∶Ds∗s ↦ Dss∗ .
S S

Ds∗s

Dss∗s ⋅

Dt∗t

S

Dtt∗

t ⋅ts ⋅
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Introduction to inverse semigroups II

Groups
permutations/full rank mat.

= inverse semigroups
partial permutations/not full rank mat.

Projections: E (S) ∶= {e ∈ S ∣ e = e2 (= e∗)}.
E (S) is a commutative subsemigroup.

Remark: groups vs. inverse semigroups ↝ partial order:
f ≤ e⇔ fe = f (↝ can extend to S ...)

S S
De∗e Dee∗e ⋅ ≡ id∣De (⋅)

Df ∗f Dff ∗

f ⋅ ≡ id∣Df
(⋅)
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Introduction to inverse semigroups III

Examples:

● Groups ↝ all the above notions are trivial.
● Bicyclic monoid:

T ∶= ⟨a, a∗ ∣ a∗a = 1⟩ = {aia∗j ∣ i , j ∈ N}.

E (T ) = {aia∗i ∣ i ∈ N} = {1, aa∗, a2a∗2, . . .} ≅ N.

1 a∗ a∗2 a∗3

a aa∗ aa∗2 aa∗3

a2

a3

a2a∗

a3a∗

a2a∗2 a2a∗3

a3a∗2 a3a∗3

⋮ ⋮ ⋮ ⋮

. . .

. . .

. . .

. . .

⋰
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Schützenberger graphs

Outcome of algorithm:

● Undirected graph.
● Connected components (one per e ∈ E (S) and L-class).

Proposition
The large scale geometry of the graph of S

does not depend on the generators, i.e.,
(S ,d ,{s1, . . . , sn}) ≅q.i. (S ,d ′,{t1, . . . , tm}).

Definition

Let S = ⟨ s1, . . . , sn ∣ relations ⟩, and u, v ∈ S . Then:

d (u, v) ∶=
⎧⎪⎪⎨⎪⎪⎩

min{` (s) ∣ su = v and s∗su = u} if u∗u = v∗v ,
0 if u∗u ≠ v∗v .
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Resulting graph construction

Remark: S is a group ⇔ only 1 conn. comp. ⇔ d (x , y) < ∞.

Recall: not all graphs are Cayley graphs. However:

Theorem
Any undirected graph is a conn. comp. of an inverse semigroup.

Sketch of proof:

Given a labeled graph (V ,E) and v0 ∈ V :

• V ∋ w ↦ path starting at v0 and ending at w .

• V ∋ w∗ ↦ path ending at v0 and starting at w .

• C ∶= {cycles starting and ending at v0} = {w∗w ∣ w ∈ V }.
• S = ⟨ {w ,w∗}w∈V ∣ { c = v0 }c∈C and v0 = v∗0 v0 ⟩.
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Recall: not all graphs are Cayley graphs. However:

Theorem
Any undirected graph is a conn. comp. of an inverse semigroup.

Sketch of proof:

Given a labeled graph (V ,E) and v0 ∈ V :
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Amenability in inverse semigroups

Def. (Day - 1957) & Prop. (Ara, Lledó, M. - 2019)
S is amenable if there is an invariant probability measure on it:
a probability measure µ∶ P (S) → [0,1] such that

(1) Domain-measure: µ (A) = µ (sA) for all A ⊂ Ds∗s .

(2) Localization: µ (B) = µ (B ∩Ds∗s) for all s ∈ S ,B ⊂ S .

Invariance explanation:
S S

Ds∗s Dss∗

s ⋅

A

sA ↝ (1) µ (A) = µ (sA) .

B

↝ (2) µ (B) = µ (B ∩Ds∗s)

= µ (B ∩Dss∗) .
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Examples of amenable inverse semigroups

Examples of amenable inverse semigroups:

1. All amenable groups.

2. 0 ∈ S ↝ µ ({0}) = 1 (or, equivalently, µ = δ0).
3. S ∶= F2 ⊔ {1} is not amenable.

Remark: localization is not dynamical... But it allows:
● Amenability of S can be cut down to amenability of Ds∗s .
● Amenability ⇔ Følner property from within Ds∗s .
● Følner property ↝ amenability is a quasi-isometry invariant.
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Amenability vs. large scale geometry and A

Recall property A ↝ Question: When does S have A?

Theorem (Ozawa - 2000)
G is a countable and discrete group. TFAE:

1. G has property A.

2. The uniform Roe algebra `∞ (G) ⋊r G is nuclear.

We use idea 4: suppose E (S) is finite and
● S has A ⇔ all connected components of (S ,d) have A.
● Conn. Comp. has A ⇔ its uniform Roe algebra is nuclear.

Study when uniform Roe algebra ≅ `∞ (S) ⋊r S .
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(3) Relation with Operator
Algebras



Introduction to uniform Roe algebras

Formal definition: For a discrete and countable group G consider:

RG ∶= `∞ (G) ⋊r G ⊂ B (`2 (G)) .

Observe:
● `∞ (G) allows to restrict to subets of G .
● Action of G allows to move points in G to points in G .

by multiplying on the left.

Intuitive definition:
{bijections ofG coarsely preserving distances} ⊂ RG .

Theorem
For a discrete and countable group G :

span{bijections inG coarsely preserving distances} =
= `∞ (G)⋊G = RG .

106 / 114



Introduction to uniform Roe algebras

Formal definition: For a discrete and countable group G consider:

RG ∶= `∞ (G) ⋊r G ⊂ B (`2 (G)) .

Observe:
● `∞ (G) allows to restrict to subets of G .
● Action of G allows to move points in G to points in G .

by multiplying on the left.

Intuitive definition:
{bijections ofG coarsely preserving distances} ⊂ RG .

Theorem
For a discrete and countable group G :

span{bijections inG coarsely preserving distances} =
= `∞ (G)⋊G = RG .

107 / 114



Introduction to uniform Roe algebras

Formal definition: For a discrete and countable group G consider:

RG ∶= `∞ (G) ⋊r G ⊂ B (`2 (G)) .

Observe:
● `∞ (G) allows to restrict to subets of G .
● Action of G allows to move points in G to points in G .

by multiplying on the left.

Intuitive definition:
{bijections ofG coarsely preserving distances}

⊂ RG .

Theorem
For a discrete and countable group G :

span{bijections inG coarsely preserving distances} =
= `∞ (G)⋊G = RG .

108 / 114



Introduction to uniform Roe algebras

Formal definition: For a discrete and countable group G consider:

RG ∶= `∞ (G) ⋊r G ⊂ B (`2 (G)) .

Observe:
● `∞ (G) allows to restrict to subets of G .
● Action of G allows to move points in G to points in G .

by multiplying on the left.

Intuitive definition:
{bijections ofG coarsely preserving distances} ⊂ RG .

Theorem
For a discrete and countable group G :

span{bijections inG coarsely preserving distances} =
= `∞ (G)⋊G = RG .

109 / 114



Introduction to uniform Roe algebras

Formal definition: For a discrete and countable group G consider:

RG ∶= `∞ (G) ⋊r G ⊂ B (`2 (G)) .

Observe:
● `∞ (G) allows to restrict to subets of G .
● Action of G allows to move points in G to points in G .

by multiplying on the left.

Intuitive definition:
{bijections ofG coarsely preserving distances} ⊂ RG .

Theorem
For a discrete and countable group G :

span{bijections inG coarsely preserving distances} =
= `∞ (G)⋊G = RG .

110 / 114



Uniform Roe algebras of inverse semigroups

In the same vein: RS ∶= `∞ (S) ⋊r S ⊂ B (`2 (S)).

Recall:
● (S ,d) had a conn. comp. for each e ∈ E (S)

RS = ⊕e∈E(S)peRSpe .
● partial traslations of (S ,d) leave the components invariant.
● RS also comes from left regular representation.

Theorem
S inverse semigroup, countable and discrete. In some cases:

RS ≅ span{bijections in (S ,d) coarsely preserving distances}.
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Thank you for your attention! Questions?
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