Non group-like metrics appearing in group-like objects

Diego Martínez December, 2020

Instituto de Ciencias Matemáticas - Universidad Carlos III de Madrid *lumartin@math.uc3m.es* UK Operator Algebras Seminar

$\mathsf{G}\, \rightsquigarrow\, \mathsf{countable}$ and discrete group

Proposition

G is equipped with a unique (up to *c.e.*) proper and right invariant metric: d(g,h) = d(gx,hx) for every $g,h,x \in G$

Sketch: Choose *r*-balls $\Gamma_1 \subset \Gamma_2 \subset \cdots \subset G$ with $\Gamma_r = \Gamma_r^{-1}$ $d(g, h) = \min \{r \in \mathbb{N} \mid gh^{-1} \in \Gamma_r\}$

$\mathsf{G}\, \rightsquigarrow\, \mathsf{countable}$ and discrete group

Proposition

- *G* is equipped with a unique (up to *c.e.*) proper and right invariant metric: d(g,h) = d(gx,hx) for every $g,h,x \in G$
- **Sketch:** Choose *r*-balls $\Gamma_1 \subset \Gamma_2 \subset \cdots \subset G$ with $\Gamma_r = \Gamma_r^{-1}$ $d(g, h) = \min \{r \in \mathbb{N} \mid gh^{-1} \in \Gamma_r\}$

Remark: not all metric spaces appear as a group *G*, e.g., $(\mathbb{N}, |\cdot|)$

Remark: not all metric spaces appear as a group *G*, e.g., $(\mathbb{N}, |\cdot|)$ **Goal:** introduce a metric in an *inverse semigroup S*: for all $s \in S$ there is a *unique* $s^* \in S$ with $ss^*s = s$ and $s^*ss^* = s^*$

Remark: not all metric spaces appear as a group G, e.g., $(\mathbb{N}, |\cdot|)$ **Goal:** introduce a metric in an *inverse semigroup S*: for all $s \in S$ there is a *unique* $s^* \in S$ with $ss^*s = s$ and $s^*ss^* = s^*$ **Example:** $T = \langle a, a^* : a^*a = 1 \rangle \rightsquigarrow K = \{a, a^*\}$ $a^{3} a^{3}a^{*} a^{3}a^{*2} a^{3}a^{*3} \cdots$ $a^{3} a^{3}a^{*} a^{3}a^{*2} a^{3}a^{*3} \cdots$

Remark: not all metric spaces appear as a group G, e.g., $(\mathbb{N}, |\cdot|)$ **Goal:** introduce a metric in an *inverse semigroup S*: for all $s \in S$ there is a *unique* $s^* \in S$ with $ss^*s = s$ and $s^*ss^* = s^*$ **Example:** $T = \langle a, a^* : a^*a = 1 \rangle \rightsquigarrow K = \{a, a^*\}$ $a^{3} a^{3}a^{*} a^{3}a^{*2} a^{3}a^{*3} \cdots$ $a^{3} a^{3}a^{*} a^{3}a^{*2} a^{3}a^{*3} \cdots$

Key: if $s^*s \neq t^*t$ then $d(s,t) = \infty$ (this is *unavoidable*!)

Amenability: expressed algebraically, and is *almost* a coarse inv:

Amenability: expressed algebraically, and is *almost* a coarse inv:

Amenability: expressed algebraically, and is *almost* a coarse inv:

Property A: Yu '99, recall:

• Free groups and amenable groups have A

Amenability: expressed algebraically, and is *almost* a coarse inv:

Property A: Yu '99, recall:

- Free groups and amenable groups have A
- G has A $\Leftrightarrow C_r^*(G)$ is exact $\Leftrightarrow \ell^{\infty}(G) \rtimes_r G$ is nuclear

Amenability: expressed algebraically, and is *almost* a coarse inv:

Property A: Yu '99, recall:

- Free groups and amenable groups have A
- G has A $\Leftrightarrow C_r^*(G)$ is exact $\Leftrightarrow \ell^{\infty}(G) \rtimes_r G$ is nuclear

Theorem (Lledó, M.)

Let S be an inverse semigroup. In some cases: S has A $\Leftrightarrow C_r^*(S)$ is exact $\Leftrightarrow \ell^{\infty}(S) \rtimes_r S$ is nuclear