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1. Inverse semigroups



Inverse semigroups and Wagner-Preston

Definition
S is an inverse semigroup if for every s ∈ S there is a unique s∗ ∈ S

such that ss∗s = s and s∗ss∗ = s∗

Remarks:
• Bicyclic monoid: B = ⟨a, a∗ ∣ a∗a = 1⟩ = {aia∗j ∣ i , j ≥ 0}
• E = {e ∈ S ∣ e2 = e} = {s∗s ∣ s ∈ S} is commutative
• Ds∗s ∶= {x ∈ S ∣ x = s∗sx} = s∗s ⋅ S is the domain of s
• s ∶Ds∗s → Dss∗ , where x ↦ sx is a bijection

Induces the Wagner-Preston representation v ∶S → I (S):
S S

Dt∗t

Dtt∗t ⋅

Ds∗s

S

Dss∗

s ⋅

D(st)∗(st) = t∗ (Dtt∗ ∩Ds∗s)

D(st)(st)∗ =
s (Dtt∗ ∩Ds∗s)

st ⋅

3
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Left regular representation and partial order

S S

Dt∗t

Dtt∗t ⋅

Ds∗s

S

Dss∗

s ⋅st ⋅

Partial order: s ≥ t⇔ there is some e ∈ E with se = t,
⇔ t is a restriction of s ⇔ st∗t = t

Left regular representation: v ∶S → B(`2 (S)), where

vsδx =
⎧⎪⎪⎨⎪⎪⎩

δsx if x ∈ Ds∗s

0 otherwise
Reduced C*-algebra: C∗

r (S) ∶= C∗ ({vs}s∈S) ⊂ B (`2 (S))
Uniform Roe algebra: RS ∶= C∗ ({fvs}s∈S ,f ∈`∞(S)) ⊂ B (`2 (S))
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Group coarse geometry

Recall: Cayley graph construction ↝ G = ⟨g±1
1 , . . . ,g±1

n ∣ relations ⟩:

• Graph ↝ Cay (G ,{g1, . . . ,gn}) ∶= (V ,E),
• Vertices ↝ V ∶= G

• Edges ↝ E ∶= {(x ,g±1
i x) ∣ x ∈ G and i = 1, . . . ,n}.

. . .. . . Z = ⟨±2,±3⟩

. . .. . . Z = ⟨±1⟩

Proposition (classical)
The large scale geometry of the Cayley graph of G

does not depend on the generators

Goal: coarse geometry of inverse semigroups
and its relation with C*-properties of C∗

r (S) and RS
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2. Schützenberger graphs and
right invariance



Infinite distances, and why they are necessary

Remark: we need to consider extended metric spaces:

if x ∈ Ds∗s = {y ∈ S ∣ s∗sy = y} then (sx)∗ (sx) = x∗x

and hence x L sx (the converse also holds)

Green’s relations:

• x L y if x∗x = y∗y
• x R y if xx∗ = yy∗

• H = L and R
• D = L ○ R

D ⊂ S

D-class

● e1

● e2

● e3

● e4

H− classes

L − class of e3

R− class of e2

Remark - need of extended metrics

Good distances d ∶S × S → [0,∞] satisfy that

x∗x = y∗y ⇔ d (x , y) < ∞

6
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Schützenberger graphs I: L-classes

Definition (Schützenberger - 1959)

Let S = ⟨K ⟩, where K = K∗. Given an L-class L ⊂ S , let ΛL be

• the graph whose vertices are the points of L and
• where x , y ∈ L are joined by a k-labeled edge if kx = y .

Likewise, let ΛS = ⊔e∈E(S)ΛLe .

"Algorithm":
●

●

Example: B ∶= ⟨a, a∗ ∣ a∗a = 1⟩

1 a∗ a∗2 a∗3

a aa∗ aa∗2 aa∗3

a2

a3

a2a∗

a3a∗

a2a∗2 a2a∗3

a3a∗2 a3a∗3

⋮ ⋮ ⋮ ⋮

. . .

. . .

. . .

. . .

⋰
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Schützenberger graphs II: right invariance

Remark: not all graphs are group Cayley graphs. However:

Theorem (Stephen - 1990)
{connected graphs} = {Schützenberger graphs}

Lemma (right invariance)

Let S = ⟨K ⟩. If x ∈ Ds∗s then d (x , sx) ≤ d (s∗s, s).
In particular, if xx∗ = s∗s then d (x , sx) = d (s∗s, s).

Proof/consequence:

●
s∗s

●
k1s
∗s
. . . . . . ● ●

s = k` . . . k1s
∗s

k1 k2 k`
Ls∗s

●
xx∗

. . . ● ●
sxx∗

k1 k2 k`
Lxx∗

●
x

. . . ● ●
sx

k1 k2 k`
Lx∗x

⋅xx∗ ⋅x

⋅x∗
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3. Day’s amenability vs. nuclearity



Day’s amenability as a coarse condition

Definition & Proposition (Day 1957 & Ara-Lledó-M. 2020)

S is amenable if there is µ∶ P (S) → [0,1] such that

(a) µ (Ds∗s) = 1 for every s ∈ S
(b) µ (B) = µ (sB) for every s ∈ S and B ⊂ Ds∗s

● (a) is a normalization condition ↝ boring
● (b) is dynamical ↝ relevant

Theorem (Ara-Lledó-M. 2020)
S has a measure as in (b)⇔ there is e ∈ E and Fn ⊂ Le such that

∣s (Fn ∩Ds∗s) ∪ Fn∣
∣Fn∣

n→∞ÐÐÐ→ 1 for all s ∈ S

Consequence: (b) ⇔ an L-class has subsets with small boundary
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Day’s amenability vs. traces vs. nuclearity

Theorem (Ara-Lledó-M. 2020)
Let S be a unital inverse semigroup. TFAE:

(i) S has a probability measure as in (b).
(ii) RS = C∗ ({fvs}s∈S ,f ∈`∞(S)) has an (amenable) trace.
(iii) ΛS is amenable (as a graph).

Remark: condition (a) can also be plugged above by saying
the trace satisfies ϕ (ve) = 1 for every e ∈ E

WARNING: Day’s amenability is not related with nuclearity!
Examples:
● F2 ⊔ {0} is Day’s amenable but not nuclear
● An example of Nica is nuclear but not Day’s amenable

10
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4. Property A vs. exactness



Schützenberger graphs and property A

Definition (Yu - 1999)

(X ,d) has property A if for every r , ε > 0 there is
ξ∶X → `1 (X )+1 and c > 0 such that supp (ξx) ⊂ Bc (x) and

∣∣ξx − ξy ∣∣1 ≤ ε for every x , y ∈ X such that d (x , y) ≤ r .

Remarks:

• Property A generalizes amenability for groups (not in general)
• Non-property A groups are hard to come by

Theorem (Ozawa - 2000)
Let G be a countable group. The following are equivalent:

(1) G has property A.
(2) RG is nuclear.
(3) C∗

r (G) is exact.

11
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Property A, nuclearity and exactness for inverse semigroups

Theorem (Lledó, M. - 2021)

Let S = ⟨K ⟩ be an inverse semigroup. Some times, TFAE:

(i) ΛS has property A.
(ii) RS is nuclear.
(iii) C∗

r (S) is exact.

Proof: (i) ⇒ (ii) given ξ∶S → `1 (S)+1 the diagram

RS →∏
x∈S

MBc(x) ⊂ `∞ (S) ⊗Mq →RS

a ↦ (pBc(x) a pBc(x))x∈S ↝ (bx)x∈S ↦ ∑
x∈S

ξ∗x bxξx

can be shown to be an approximation of id∶RS →RS

(ii) ⇒ (iii) is clear, while for (iii) ⇒ (i) maybe RS ≅ C∗
u (ΛS)

Question: some times? When is that?
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5. Having finitely complex local
structures



Finite labeling I: local structure

Note: ΛS = vertices + edges, and edges represent (x , sx)

with x ∈ Ds∗s

Problem: S = (N,min) ↝ n ⋅m ∶= min{n,m}

●
1

<
1
2
3

⋮
k

k + 1
⋮

●
2

<

2
3

⋮
k

k + 1
⋮

●
3

<

3

⋮
k

k + 1
⋮

. . . . . . < ●
k

< ●
k + 1

< . . .

k

k + 1
⋮

k + 1
⋮

Dk = ∪s∈FDs∗s

●
1

< ●
2

< ●
3

< . . . . . . < ●
k

Key: for large r ≥ 0 /∃ F ⋐ S labeling the paths in ΛS of length r
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Finite labeling II: a picture to top the explanation

Definition (Lledó, M. - 2021)

Let S = ⟨K ⟩. We say (S ,K) admits a finite labeling if
for any r ≥ 0 there is F ⋐ S such that if d (s∗s, s) ≤ r

then there is m ∈ F such that ms∗s = s.

Examples:
(1) Finitely generated semigroups
(2) Discrete groups ↝ proper and right invariant metric

Schützenberger
graphs of S

● e1

● e2

● e3

⋮

Cylinder of
radius r

F = shaded
area
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Finite labeling III: importance

Theorem (Lledó, M. - 2021)

Suppose that (S ,K) admits a finite labeling. Then:
RS ≅ `∞ (S) ⋊r S ≅ C∗

u (ΛS)
for a certain canonical action S ↷ `∞ (S).

Theorem (classical - for groups!)

For arbitrary groups: RG ≅ `∞ (G) ⋊r G ≅ C∗
u (G).

Examples of not FL semigroups: S = (N,min) →
we have RS = c0, while `∞ (S) ⋊r S = C∗

u (ΛS) = `∞

Actually, even more is true:

Theorem (Lledó, M. - 2021)

RS ≅ C∗
u (ΛS) if, and only if, (S ,K) admits a FL.

15



Finite labeling III: importance

Theorem (Lledó, M. - 2021)

Suppose that (S ,K) admits a finite labeling. Then:
RS ≅ `∞ (S) ⋊r S ≅ C∗

u (ΛS)
for a certain canonical action S ↷ `∞ (S).

Theorem (classical - for groups!)

For arbitrary groups: RG ≅ `∞ (G) ⋊r G ≅ C∗
u (G).

Examples of not FL semigroups: S = (N,min) →
we have RS = c0, while `∞ (S) ⋊r S = C∗

u (ΛS) = `∞

Actually, even more is true:

Theorem (Lledó, M. - 2021)

RS ≅ C∗
u (ΛS) if, and only if, (S ,K) admits a FL.

15



Finite labeling III: importance

Theorem (Lledó, M. - 2021)

Suppose that (S ,K) admits a finite labeling. Then:
RS ≅ `∞ (S) ⋊r S ≅ C∗

u (ΛS)
for a certain canonical action S ↷ `∞ (S).

Theorem (classical - for groups!)

For arbitrary groups: RG ≅ `∞ (G) ⋊r G ≅ C∗
u (G).

Examples of not FL semigroups: S = (N,min) →
we have RS = c0, while `∞ (S) ⋊r S = C∗

u (ΛS) = `∞

Actually, even more is true:

Theorem (Lledó, M. - 2021)

RS ≅ C∗
u (ΛS) if, and only if, (S ,K) admits a FL.

15



Finite labeling III: importance

Theorem (Lledó, M. - 2021)

Suppose that (S ,K) admits a finite labeling. Then:
RS ≅ `∞ (S) ⋊r S ≅ C∗

u (ΛS)
for a certain canonical action S ↷ `∞ (S).

Theorem (classical - for groups!)

For arbitrary groups: RG ≅ `∞ (G) ⋊r G ≅ C∗
u (G).

Examples of not FL semigroups: S = (N,min) →
we have RS = c0, while `∞ (S) ⋊r S = C∗

u (ΛS) = `∞

Actually, even more is true:

Theorem (Lledó, M. - 2021)

RS ≅ C∗
u (ΛS) if, and only if, (S ,K) admits a FL.

15



Finite labelings characterizing the uniform Roe algebra

Theorem (Lledó, M. - 2021)

RS ≅ C∗
u (ΛS) if, and only if, (S ,K) admits a FL.

Recall C∗
u (ΛS) = C∗ ({t ∈ B (`2 (S)) of finite propagation})

Proof:
● If t has finite propagation + (S ,K) admits a FL
then ↝ t = ∑s∈F fsvs , where fs ∈ `∞ (S)
i.e., we can label the pairs (x , y) with ⟨δy , tδx⟩ ≠ 0 as pairs
(x , sx) with s ∈ F ⋐ S . Thus RS ⊃ C∗

u (ΛS)

● If not FL ↝ construct t of propagation 1 with t /∈ RS

Thank you for your attention!

Questions?
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