Inverse semigroups, their non-group-like geometries, and their amenability and property A

Diego Martínez – WWU Münster

September 28th, 2021

lumartin@math.uc3m.es

Web seminar of operator algebras - Universidade Federal de Santa Catarina Based on joint work with Pere Ara and Fernando Lledó

- (1) Inverse semigroups
- (2) Schützenberger graphs and right invariance
- (3) Day's amenability vs. nuclearity
- (4) Property A vs. exactness
- (5) Having finite local structure

1. Inverse semigroups

Definition

S is an *inverse semigroup* if for every $s \in S$ there is a unique $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$

Definition

S is an *inverse semigroup* if for every $s \in S$ there is a unique $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$

Remarks:

• Bicyclic monoid: $\mathcal{B} = \langle a, a^* \mid a^*a = 1 \rangle = \{a^i a^{*j} \mid i, j \ge 0\}$

Definition

S is an *inverse semigroup* if for every $s \in S$ there is a unique $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$

Remarks:

- Bicyclic monoid: $\mathcal{B} = \langle a, a^* \mid a^*a = 1 \rangle = \{a^i a^{*j} \mid i, j \ge 0\}$
- $E = \{e \in S \mid e^2 = e\} = \{s^* s \mid s \in S\}$ is commutative

•
$$D_{s^*s} := \{x \in S \mid x = s^*sx\} = s^*s \cdot S$$
 is the domain of s

•
$$\overline{s: D_{s^*s} \to D_{ss^*}}$$
, where $x \mapsto sx$ is a bijection

Definition

S is an *inverse semigroup* if for every $s \in S$ there is a unique $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$

Remarks:

• Bicyclic monoid: $\mathcal{B} = \langle a, a^* \mid a^*a = 1 \rangle = \{a^i a^{*j} \mid i, j \ge 0\}$

•
$$E = \{e \in S \mid e^2 = e\} = \{s^* s \mid s \in S\}$$
 is commutative

•
$$D_{s^*s} := \{x \in S \mid x = s^*sx\} = s^*s \cdot S$$
 is the domain of s

•
$$\overline{s: D_{s^*s} \to D_{ss^*}}$$
, where $x \mapsto sx$ is a bijection

Induces the *Wagner-Preston* representation $v: S \rightarrow \mathcal{I}(S)$:

Definition

S is an *inverse semigroup* if for every $s \in S$ there is a unique $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$

Remarks:

• Bicyclic monoid: $\mathcal{B} = \langle a, a^* \mid a^*a = 1 \rangle = \{a^i a^{*j} \mid i, j \ge 0\}$

•
$$E = \{e \in S \mid e^2 = e\} = \{s^* s \mid s \in S\}$$
 is commutative

•
$$D_{s^*s} := \{x \in S \mid x = s^*sx\} = s^*s \cdot S$$
 is the domain of s

•
$$\overline{s: D_{s^*s} \to D_{ss^*}}$$
, where $x \mapsto sx$ is a bijection

Induces the *Wagner-Preston* representation $v: S \rightarrow \mathcal{I}(S)$:

Partial order: $s \ge t \Leftrightarrow$ there is some $e \in E$ with se = t, $\Leftrightarrow t$ is a *restriction* of $s \Leftrightarrow st^*t = t$

Partial order: $s \ge t \Leftrightarrow$ there is some $e \in E$ with se = t, $\Leftrightarrow t$ is a *restriction* of $s \Leftrightarrow st^*t = t$

Left regular representation: $v: S \to \mathcal{B}(\ell^2(S))$, where $v_s \delta_x = \begin{cases} \delta_{sx} & \text{if } x \in D_{s^*s} \\ 0 & \text{otherwise} \end{cases}$

Partial order: $s \ge t \Leftrightarrow$ there is some $e \in E$ with se = t, $\Leftrightarrow t$ is a *restriction* of $s \Leftrightarrow st^*t = t$

Left regular representation: $v: S \rightarrow \mathcal{B}(\ell^2(S))$, where

$$\nu_s \delta_x = \begin{cases} \delta_{sx} & \text{if } x \in D_{s^*s} \\ 0 & \text{otherwise} \end{cases}$$

Reduced C*-algebra: $C_r^*(S) \coloneqq C^*(\{v_s\}_{s \in S})$ $\subset \mathcal{B}(\ell^2(S))$ Uniform Roe algebra: $\mathcal{R}_S \coloneqq C^*(\{fv_s\}_{s \in S, f \in \ell^{\infty}(S)})$ $\subset \mathcal{B}(\ell^2(S))$

Group coarse geometry

Recall: Cayley graph construction $\rightsquigarrow G = \langle g_1^{\pm 1}, \dots, g_n^{\pm 1} | \text{ relations } \rangle$:

- Graph \rightsquigarrow Cay $(G, \{g_1, \ldots, g_n\}) \coloneqq (V, E)$,
- Vertices $\rightsquigarrow V := G$
- Edges $\rightsquigarrow E := \{(x, g_i^{\pm 1}x) \mid x \in G \text{ and } i = 1, \dots, n\}.$

Group coarse geometry

Recall: Cayley graph construction $\rightsquigarrow G = \langle g_1^{\pm 1}, \dots, g_n^{\pm 1} | \text{ relations } \rangle$:

- Graph \rightsquigarrow Cay $(G, \{g_1, \ldots, g_n\}) \coloneqq (V, E)$,
- Vertices $\rightsquigarrow V := G$
- Edges $\rightsquigarrow E := \{(x, g_i^{\pm 1}x) \mid x \in G \text{ and } i = 1, \dots, n\}.$

Group coarse geometry

Recall: Cayley graph construction $\rightsquigarrow G = \langle g_1^{\pm 1}, \ldots, g_n^{\pm 1} | \text{ relations } \rangle$:

- Graph \rightsquigarrow Cay $(G, \{g_1, \ldots, g_n\}) \coloneqq (V, E)$,
- Vertices $\rightsquigarrow V := G$
- Edges $\rightsquigarrow E := \{(x, g_i^{\pm 1}x) \mid x \in G \text{ and } i = 1, \dots, n\}.$

$$\cdots \quad \underbrace{ \mathbb{Z} = \langle \pm 2, \pm 3 \rangle}_{\cdots \qquad \cdots \qquad \mathbb{Z} = \langle \pm 1 \rangle$$

Proposition (classical)

The large scale geometry of the Cayley graph of G does <u>not</u> depend on the generators

Goal: coarse geometry of inverse semigroups and its relation with C*-properties of $C_r^*(S)$ and \mathcal{R}_S

Remark: we need to consider extended metric spaces:

if
$$x \in D_{s^*s} = \{y \in S \mid s^*sy = y\}$$
 then $(sx)^*(sx) = x^*x$

and hence $x \mathcal{L} sx$ (the converse also holds)

Remark: we need to consider extended metric spaces:

if
$$x \in D_{s^*s} = \{y \in S \mid s^*sy = y\}$$
 then $(sx)^*(sx) = x^*x$

and hence $x \mathcal{L} sx$ (the converse also holds)

Green's relations:

- $x \mathcal{L} y$ if $x^* x = y^* y$
- $x \mathcal{R} y$ if $xx^* = yy^*$
- $\mathcal{H} = \mathcal{L}$ and \mathcal{R}
- $\mathcal{D} = \mathcal{L} \circ \mathcal{R}$

Remark: we need to consider extended metric spaces:

if
$$x \in D_{s^*s} = \{y \in S \mid s^*sy = y\}$$
 then $(sx)^*(sx) = x^*x$

and hence $X \mathcal{L} s x$ (the converse also holds)

Remark: we need to consider *extended* metric spaces:

if
$$x \in D_{s^*s} = \{y \in S \mid s^*sy = y\}$$
 then $(sx)^*(sx) = x^*x$

and hence $x \mathcal{L} sx$ (the converse also holds)

Remark - need of extended metrics

Good distances $d: S \times S \rightarrow [0, \infty]$ satisfy that

$$x^*x = y^*y \Leftrightarrow d(x,y) < \infty$$

Definition (Schützenberger - 1959)

Let $S = \langle K \rangle$, where $K = K^*$. Given an \mathcal{L} -class $L \subset S$, let Λ_L be

- the graph whose vertices are the points of L and
- where $x, y \in L$ are joined by a k-labeled edge if kx = y.

Likewise, let $\Lambda_S = \sqcup_{e \in E(S)} \Lambda_{L_e}$.

Definition (Schützenberger - 1959)

Let $S = \langle K \rangle$, where $K = K^*$. Given an \mathcal{L} -class $L \subset S$, let Λ_L be

- the graph whose vertices are the points of L and
- where $x, y \in L$ are joined by a k-labeled edge if kx = y.

```
Likewise, let \Lambda_S = \sqcup_{e \in E(S)} \Lambda_{L_e}.
```

- Construct the (left)
- Cayley graph w.r.t. K
- Erase directed arrows

Definition (Schützenberger - 1959)

Let $S = \langle K \rangle$, where $K = K^*$. Given an \mathcal{L} -class $L \subset S$, let Λ_L be

- the graph whose vertices are the points of L and
- where $x, y \in L$ are joined by a k-labeled edge if kx = y.

Likewise, let $\Lambda_S = \sqcup_{e \in E(S)} \Lambda_{L_e}$.

Example: $\mathcal{B} \coloneqq \langle a, a^* \mid a^*a = 1 \rangle$

"Algorithm":

• Construct the (left)

Cayley graph w.r.t. K

• Erase directed arrows

Definition (Schützenberger - 1959)

Let $S = \langle K \rangle$, where $K = K^*$. Given an \mathcal{L} -class $L \subset S$, let Λ_L be

- the graph whose vertices are the points of L and
- where $x, y \in L$ are joined by a k-labeled edge if kx = y.

Likewise, let $\Lambda_S = \sqcup_{e \in E(S)} \Lambda_{L_e}$.

	Example	e: B	:= {a	$a, a^* \mid$	a* a	$=1\rangle$
		÷	:	÷	÷	
		a ³	a ³ a*	a ³ a*2	a ³ a* ³	
(left)		 2 ²	2°2*	2°2*2	2°2*3	
t. <i>K</i>						
rrows		a I	aa*	aa* ²	aa* ³	
			 → ^* —	 →_*2	 →_*3	
		- L	' d	'a	'a	

- Construct the (left) Cayley graph w.r.t. *K*
- Erase directed arrows

Definition (Schützenberger - 1959)

Let $S = \langle K \rangle$, where $K = K^*$. Given an \mathcal{L} -class $L \subset S$, let Λ_L be

- the graph whose vertices are the points of L and
- where $x, y \in L$ are joined by a k-labeled edge if kx = y.

Likewise, let $\Lambda_S = \sqcup_{e \in E(S)} \Lambda_{L_e}$.

	Example: £	3 := (,	$a, a^* \mid$	a* a =	$=1\rangle$
	:	:	÷	÷	
loft)	a ³ 	a ³ a*	a ³ a*2	a ³ a* ³	
K K	a ²	 a ² a* 	a ² a* ²	a ² a* ³	
rows	 	 aa*	 aa* ²	 aa* ³	
	1 -	$\rightarrow a^* -$	 →a ^{*2}	 →a ^{*3}	

- Construct the (left) Cayley graph w.r.t. *K*
- Erase directed arrows

Definition (Schützenberger - 1959)

Let $S = \langle K \rangle$, where $K = K^*$. Given an \mathcal{L} -class $L \subset S$, let Λ_L be

- the graph whose vertices are the points of L and
- where $x, y \in L$ are joined by a k-labeled edge if kx = y.

Likewise, let $\Lambda_S = \sqcup_{e \in E(S)} \Lambda_{L_e}$.

	Example: \mathcal{B}	:= ($a, a^* \mid$	$a^*a = 1 \rangle$
	:	:	÷	÷ .*
	a^3	a ³ a*	a ³ a*2	$a^{3}a^{*3}\cdots$
ft)	 2	 a ² a*	2 ² a*2	a ² a* ³
K			Ĩ	
ows	a	aa*	aa* ²	aa* ³ · · ·
	 1 —	 → a* –	 →a* ² —	 →a ^{*3}

- Construct the (left) Cayley graph w.r.t. *K*
- Erase directed arrows

Schützenberger graphs I: *L*-classes

Definition (Schützenberger - 1959)

Let $S = \langle K \rangle$, where $K = K^*$. Given an \mathcal{L} -class $L \subset S$, let Λ_I be

- the graph whose vertices are the points of L and
- where $x, y \in L$ are joined by a k-labeled edge if kx = y.

Likewise, let $\Lambda_S = \sqcup_{e \in E(S)} \Lambda_{L_e}$.

	Example: B	S := ⟨.	a, a*	a* a :	$=1\rangle$
	:	÷	:	÷	
"Algorithm":	a^3	a ³ a*	a ³ a*2	a ³ a* ³	
• Construct the (left)					
Cayley graph w.r.t. <i>K</i>	a ²	a ² a*	a ² a* ²	a ² a* ³	
• Erase directed arrows	a	aa*	aa* ²	aa* ³	
	1	a*	a*2	a*3	

Definition (Schützenberger - 1959)

Let $S = \langle K \rangle$, where $K = K^*$. Given an \mathcal{L} -class $L \subset S$, let Λ_L be

- the graph whose vertices are the points of L and
- where $x, y \in L$ are joined by a k-labeled edge if kx = y.

Likewise, let $\Lambda_S = \sqcup_{e \in E(S)} \Lambda_{L_e}$.

	Example: \mathcal{B}	3 := (,	a, a*	a* a	$=1\rangle$
	÷	÷	÷	÷	÷
"Algorithm":	a^3	a ³ a*	a ³ a*2	a ³ a* ³	
• Construct the (left)					
Cayley graph w.r.t. <i>K</i>	a ²	a ² a*	a ² a* ²	a ² a* ³	
• Erase directed arrows	l a	aa*	аа* ²	। аа* ³	
	1	a*	a*2	a*3	

Remark: not all graphs are group Cayley graphs. However:

Theorem (Stephen - 1990)

{connected graphs} = {Schützenberger graphs}

Remark: not all graphs are group Cayley graphs. However: Theorem (Stephen - 1990) {connected graphs} = {Schützenberger graphs} Lemma (right invariance) Let $S = \langle K \rangle$. If $x \in D_{s^*s}$ then $d(x, sx) \leq d(s^*s, s)$. In particular, if $xx^* = s^*s$ then $d(x, sx) = d(s^*s, s)$.

$$L_{s^*s} \xrightarrow{k_1 \quad k_2 \quad \dots \quad k_{\ell}}_{s^*s \quad k_1s^*s} \xrightarrow{s = k_{\ell} \dots \quad k_1s^*s}$$

Remark: not all graphs are group Cayley graphs. However: Theorem (Stephen - 1990) {connected graphs} = {Schützenberger graphs} Lemma (right invariance) Let $S = \langle K \rangle$. If $x \in D_{s^*s}$ then $d(x, sx) \leq d(s^*s, s)$. In particular, if $xx^* = s^*s$ then $d(x, sx) = d(s^*s, s)$.

Remark: not all graphs are group Cayley graphs. However: Theorem (Stephen - 1990) {connected graphs} = {Schützenberger graphs} Lemma (right invariance) Let $S = \langle K \rangle$. If $x \in D_{s^*s}$ then $d(x, sx) \le d(s^*s, s)$. In particular, if $xx^* = s^*s$ then $d(x, sx) = d(s^*s, s)$.

Remark: not all graphs are group Cayley graphs. However: Theorem (Stephen - 1990) {connected graphs} = {Schützenberger graphs} Lemma (right invariance) Let $S = \langle K \rangle$. If $x \in D_{s^*s}$ then $d(x, sx) \le d(s^*s, s)$. In particular, if $xx^* = s^*s$ then $d(x, sx) = d(s^*s, s)$.

Remark: not all graphs are group Cayley graphs. However: Theorem (Stephen - 1990) {connected graphs} = {Schützenberger graphs} Lemma (right invariance) Let $S = \langle K \rangle$. If $x \in D_{s^*s}$ then $d(x, sx) \le d(s^*s, s)$. In particular, if $xx^* = s^*s$ then $d(x, sx) = d(s^*s, s)$.

3. Day's amenability vs. nuclearity

Definition & Proposition (Day 1957 & Ara-Lledó-M. 2020)

S is $\underline{amenable}$ if there is $\mu {:} \mathcal{P}\left(S\right) \rightarrow \left[0,1\right]$ such that

(a) $\mu(D_{s^*s}) = 1$ for every $s \in S$ (b) $\mu(B) = \mu(sB)$ for every $s \in S$ and $B \subset D_{s^*s}$

Definition & Proposition (Day 1957 & Ara-Lledó-M. 2020)

S is $\underline{amenable}$ if there is $\mu {:} \mathcal{P}\left(S\right) \rightarrow \left[0,1\right]$ such that

(a) $\mu(D_{s^*s}) = 1$ for every $s \in S$ (b) $\mu(B) = \mu(sB)$ for every $s \in S$ and $B \subset D_{s^*s}$

- (a) is a normalization condition \rightsquigarrow boring
- (b) is dynamical \sim relevant

Definition & Proposition (Day 1957 & Ara-Lledó-M. 2020)

S is $\underline{amenable}$ if there is $\mu {:}\, \mathcal{P}\left(S\right) \rightarrow \left[0,1\right]$ such that

(a) $\mu(D_{s^*s}) = 1$ for every $s \in S$ (b) $\mu(B) = \mu(sB)$ for every $s \in S$ and $B \subset D_{s^*s}$

- (a) is a normalization condition \rightsquigarrow boring
- (b) is dynamical \rightsquigarrow relevant

Theorem (Ara-Lledó-M. 2020)

 $\begin{array}{l} S \text{ has a measure as in (b)} \Leftrightarrow \text{ there is } e \in E \text{ and } F_n \subset L_e \text{ such that} \\ \\ \hline \frac{|s \left(F_n \cap D_{s^*s}\right) \cup F_n|}{|F_n|} \xrightarrow[n \to \infty]{} 1 \text{ for all } s \in S \end{array}$

Definition & Proposition (Day 1957 & Ara-Lledó-M. 2020)

S is $\underline{amenable}$ if there is $\mu {:}\, \mathcal{P}\left(S\right) \rightarrow \left[0,1\right]$ such that

(a) $\mu(D_{s^*s}) = 1$ for every $s \in S$ (b) $\mu(B) = \mu(sB)$ for every $s \in S$ and $B \subset D_{s^*s}$

- (a) is a normalization condition \rightsquigarrow boring
- (b) is dynamical \rightsquigarrow relevant

Theorem (Ara-Lledó-M. 2020)

 $\begin{array}{l} S \text{ has a measure as in (b)} \Leftrightarrow \text{ there is } e \in E \text{ and } F_n \subset L_e \text{ such that} \\ \\ \hline \frac{|s \left(F_n \cap D_{s^*s}\right) \cup F_n|}{|F_n|} \xrightarrow[n \to \infty]{} 1 \text{ for all } s \in S \end{array}$

Consequence: (b) \Leftrightarrow an \mathcal{L} -class has subsets with small boundary

Day's amenability vs. traces vs. nuclearity

Theorem (Ara-Lledó-M. 2020)

Let S be a unital inverse semigroup. TFAE:

(i) *S* has a probability measure as in (b). (ii) $\mathcal{R}_{S} = C^{*} \left(\{ fv_{s} \}_{s \in S, f \in \ell^{\infty}(S)} \right)$ has an (amenable) trace. (iii) Λ_{S} is amenable (as a graph).

Day's amenability vs. traces vs. nuclearity

Theorem (Ara-Lledó-M. 2020)

Let S be a unital inverse semigroup. TFAE:

(i) *S* has a probability measure as in (b). (ii) $\mathcal{R}_{S} = C^{*} \left(\{ fv_{s} \}_{s \in S, f \in \ell^{\infty}(S)} \right)$ has an (amenable) trace. (iii) Λ_{S} is amenable (as a graph).

Remark: condition (a) can also be plugged above by saying the trace satisfies $\varphi(v_e) = 1$ for every $e \in E$

Theorem (Ara-Lledó-M. 2020)

Let S be a unital inverse semigroup. TFAE:

(i) *S* has a probability measure as in (b). (ii) $\mathcal{R}_{S} = C^{*} \left(\{ fv_{s} \}_{s \in S, f \in \ell^{\infty}(S)} \right)$ has an (amenable) trace. (iii) Λ_{S} is amenable (as a graph).

Remark: condition (a) can also be plugged above by saying the trace satisfies $\varphi(v_e) = 1$ for every $e \in E$

WARNING: Day's amenability is <u>not</u> related with nuclearity! Examples:

- $\bullet~\mathbb{F}_2 \sqcup \{0\}$ is Day's amenable but not nuclear
- An example of Nica is nuclear but not Day's amenable

4. Property A vs. exactness

Schützenberger graphs and property A

Definition (Yu - 1999)

(X, d) has property A if for every $r, \varepsilon > 0$ there is $\xi: X \to \ell^{\overline{1}}(X)_{1}^{+}$ and c > 0 such that supp $(\xi_{x}) \subset B_{c}(x)$ and $||\xi_{x} - \xi_{y}||_{1} \le \varepsilon$ for every $x, y \in X$ such that $d(x, y) \le r$.

Schützenberger graphs and property A

Definition (Yu - 1999)

(X, d) has property A if for every $r, \varepsilon > 0$ there is $\xi: X \to \ell^{\overline{1}}(X)_{1}^{+}$ and c > 0 such that supp $(\xi_{x}) \subset B_{c}(x)$ and $||\xi_{x} - \xi_{y}||_{1} \le \varepsilon$ for every $x, y \in X$ such that $d(x, y) \le r$.

Remarks:

- Property A generalizes amenability for groups (not in general)
- Non-property A groups are hard to come by

Schützenberger graphs and property A

Definition (Yu - 1999)

(X, d) has property A if for every $r, \varepsilon > 0$ there is $\xi: X \to \ell^{\overline{1}}(X)_{1}^{+}$ and c > 0 such that supp $(\xi_{x}) \subset B_{c}(x)$ and $||\xi_{x} - \xi_{y}||_{1} \le \varepsilon$ for every $x, y \in X$ such that $d(x, y) \le r$.

Remarks:

- Property A generalizes amenability for groups (not in general)
- Non-property A groups are hard to come by

Theorem (Ozawa - 2000)

Let G be a countable group. The following are equivalent:

- (1) G has property A.
- (2) \mathcal{R}_G is nuclear.
- (3) $C_r^*(G)$ is exact.

Property A, nuclearity and exactness for inverse semigroups

Theorem (Lledó, M. - 2021)

Let $S = \langle K \rangle$ be an inverse semigroup. Some times, TFAE:

(i) Λ_S has property A. (ii) \mathcal{R}_S is nuclear. (iii) $C_r^*(S)$ is exact. Property A, nuclearity and exactness for inverse semigroups

Theorem (Lledó, M. - 2021)

Let $S = \langle K \rangle$ be an inverse semigroup. *Some* times, TFAE:

(i) Λ_S has property A. (ii) \mathcal{R}_S is nuclear. (iii) $C_r^*(S)$ is exact.

Proof: (i) \Rightarrow (ii) given $\xi: S \rightarrow \ell^1(S)_1^+$ the diagram

$$\mathcal{R}_{S} \to \prod_{x \in S} M_{B_{c}(x)} \subset \ell^{\infty}(S) \otimes M_{q} \to \mathcal{R}_{S}$$
$$a \mapsto \left(p_{B_{c}(x)} \ a \ p_{B_{c}(x)} \right)_{x \in S} \rightsquigarrow (b_{x})_{x \in S} \mapsto \sum_{x \in S} \xi_{x}^{*} b_{x} \xi_{x}$$

can be shown to be an approximation of $\mathsf{id} \colon \mathcal{R}_{\mathcal{S}} \to \mathcal{R}_{\mathcal{S}}$

 $(ii) \Rightarrow (iii)$ is clear, while for $(iii) \Rightarrow (i)$ maybe $\mathcal{R}_S \cong C_u^*(\Lambda_S)$

Property A, nuclearity and exactness for inverse semigroups

Theorem (Lledó, M. - 2021)

Let $S = \langle K \rangle$ be an inverse semigroup. Some times, TFAE:

(i) Λ_S has property A. (ii) \mathcal{R}_S is nuclear. (iii) $C_r^*(S)$ is exact.

Proof: (i) \Rightarrow (ii) given ξ : $S \rightarrow \ell^1(S)_1^+$ the diagram

$$\mathcal{R}_{S} \to \prod_{x \in S} M_{B_{c}(x)} \subset \ell^{\infty}(S) \otimes M_{q} \to \mathcal{R}_{S}$$
$$a \mapsto \left(p_{B_{c}(x)} \ a \ p_{B_{c}(x)} \right)_{x \in S} \rightsquigarrow (b_{x})_{x \in S} \mapsto \sum_{x \in S} \xi_{x}^{*} b_{x} \xi_{x}$$

can be shown to be an approximation of $\text{id} \colon \mathcal{R}_{\mathcal{S}} \to \mathcal{R}_{\mathcal{S}}$

<u>(ii)</u> \Rightarrow (iii) is clear, while for <u>(iii)</u> \Rightarrow (i) maybe $\mathcal{R}_S \cong C_u^*(\Lambda_S)$ Question: some times? When is that?

5. Having finitely complex local structures

Note: Λ_S = vertices + edges, and edges represent (*x*, *sx*)

Note: Λ_S = vertices + edges, and edges represent (x, sx)with $x \in D_{s^*s}$

Problem: $S = (\mathbb{N}, \min) \rightsquigarrow n \cdot m := \min\{n, m\}$

Note: Λ_S = vertices + edges, and edges represent (x, sx)with $x \in D_{s^*s}$

<u>Problem:</u> $S = (\mathbb{N}, \min) \rightsquigarrow n \cdot m := \min\{n, m\}$

Note: Λ_S = vertices + edges, and edges represent (x, sx)with $x \in D_{s^*s}$

<u>Problem</u>: $S = (\mathbb{N}, \min) \rightsquigarrow n \cdot m \coloneqq \min\{n, m\}$

Key: for large $r \ge 0 \not\supseteq F \Subset S$ labeling the paths in Λ_S of length r

Finite labeling II: a picture to top the explanation

Definition (Lledó, M. - 2021)

Let $S = \langle K \rangle$. We say (S, K) admits a *finite labeling* if for any $r \ge 0$ there is $F \Subset S$ such that if $d(s^*s, s) \le r$ then there is $m \in F$ such that $ms^*s = s$.

Finite labeling II: a picture to top the explanation

Definition (Lledó, M. - 2021)

Let $S = \langle K \rangle$. We say (S, K) admits a *finite labeling* if for any $r \ge 0$ there is $F \Subset S$ such that if $d(s^*s, s) \le r$ then there is $m \in F$ such that $ms^*s = s$.

Examples:

- (1) Finitely generated semigroups
- (2) Discrete groups ~ proper and right invariant metric

Finite labeling II: a picture to top the explanation

Definition (Lledó, M. - 2021)

Let $S = \langle K \rangle$. We say (S, K) admits a *finite labeling* if for any $r \ge 0$ there is $F \Subset S$ such that if $d(s^*s, s) \le r$ then there is $m \in F$ such that $ms^*s = s$.

Examples:

- (1) Finitely generated semigroups
- (2) Discrete groups ~ proper and right invariant metric

Theorem (Lledó, M. - 2021)

Suppose that (S, K) admits a finite labeling. Then: $\mathcal{R}_S \cong \ell^{\infty}(S) \rtimes_r S \cong C_u^*(\Lambda_S)$ for a certain canonical action $S \curvearrowright \ell^{\infty}(S)$.

Theorem (Lledó, M. - 2021)

Suppose that (S, K) admits a finite labeling. Then: $\mathcal{R}_{S} \cong \ell^{\infty}(S) \rtimes_{r} S \cong C_{u}^{*}(\Lambda_{S})$ for a certain canonical action $S \curvearrowright \ell^{\infty}(S)$.

Theorem (classical - for groups!)

For arbitrary groups: $\mathcal{R}_{G} \cong \ell^{\infty}(G) \rtimes_{r} G \cong C_{u}^{*}(G)$.

Theorem (Lledó, M. - 2021)

Suppose that (S, K) admits a finite labeling. Then: $\mathcal{R}_{S} \cong \ell^{\infty}(S) \rtimes_{r} S \cong C_{u}^{*}(\Lambda_{S})$ for a certain canonical action $S \curvearrowright \ell^{\infty}(S)$.

Theorem (classical - for groups!)

For arbitrary groups: $\mathcal{R}_{G} \cong \ell^{\infty}(G) \rtimes_{r} G \cong C_{u}^{*}(G)$.

Examples of **not** FL semigroups: $S = (\mathbb{N}, \min) \rightarrow$ we have $\mathcal{R}_S = c_0$, while $\ell^{\infty}(S) \rtimes_r S = C_u^*(\Lambda_S) = \ell^{\infty}$

Theorem (Lledó, M. - 2021)

Suppose that (S, K) admits a finite labeling. Then: $\mathcal{R}_{S} \cong \ell^{\infty}(S) \rtimes_{r} S \cong C_{u}^{*}(\Lambda_{S})$ for a certain canonical action $S \curvearrowright \ell^{\infty}(S)$.

Theorem (classical - for groups!)

For arbitrary groups: $\mathcal{R}_{G} \cong \ell^{\infty}(G) \rtimes_{r} G \cong C_{u}^{*}(G)$.

Examples of **not** FL semigroups: $S = (\mathbb{N}, \min) \rightarrow$ we have $\mathcal{R}_S = c_0$, while $\ell^{\infty}(S) \rtimes_r S = C_u^*(\Lambda_S) = \ell^{\infty}$

Actually, even more is true:

Theorem (Lledó, M. - 2021) $\mathcal{R}_{S} \cong C_{u}^{*}(\Lambda_{S})$ if, and only if, (S, K) admits a FL.

Finite labelings characterizing the uniform Roe algebra

Theorem (Lledó, M. - 2021)

 $\mathcal{R}_{S} \cong C_{u}^{*}(\Lambda_{S})$ if, and only if, (S, K) admits a FL.

Recall $C_{u}^{*}(\Lambda_{S}) = C^{*}(\{t \in \mathcal{B}(\ell^{2}(S)) \text{ of finite propagation }\})$

Proof:

• If t has finite propagation + (S, K) admits a FL then $\rightsquigarrow t = \sum_{s \in F} f_s v_s$, where $f_s \in \ell^{\infty}(S)$ i.e., we can label the pairs (x, y) with $\langle \delta_y, t \delta_x \rangle \neq 0$ as pairs (x, sx) with $s \in F \Subset S$. Thus $\mathcal{R}_S \supset C_u^*(\Lambda_S)$

• If not FL \rightsquigarrow construct t of propagation 1 with $t \notin \mathcal{R}_S$

Finite labelings characterizing the uniform Roe algebra

Theorem (Lledó, M. - 2021)

 $\mathcal{R}_S \cong C_u^*(\Lambda_S)$ if, and only if, (S, K) admits a FL.

Recall $C_{u}^{*}(\Lambda_{S}) = C^{*}(\{t \in \mathcal{B}(\ell^{2}(S)) \text{ of finite propagation }\})$

Proof:

• If t has finite propagation + (S, K) admits a FL then $\rightsquigarrow t = \sum_{s \in F} f_s v_s$, where $f_s \in \ell^{\infty}(S)$ i.e., we can label the pairs (x, y) with $\langle \delta_y, t \delta_x \rangle \neq 0$ as pairs (x, sx) with $s \in F \Subset S$. Thus $\mathcal{R}_S \supset C_u^*(\Lambda_S)$

• If not FL \rightsquigarrow construct t of propagation 1 with $t \notin \mathcal{R}_S$

Thank you for your attention!

Questions?