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S is an inverse semigroup if for every s € S there is a unique s* € S

such that ss*s = s and s¥ss* = s*

Remarks:

Bicyclic monoid: B = (a,a* |a*a=1) = {a'a¥ | i,j >0}
E={eeS|e*=e}={s"s|seS} is commutative
Ds+s:={x €S| x=5s"sx} =s*s-S is the domain of s

s: Dg+s — Dss+, where x — sx is a bijection

Induces the Wagner-Preston representation v:S — Z (S):
S S S

D(st)(st)* =
S(Dtt* N Ds*s)

D(st)*(st) = @ (Dtt* n Ds*s) 3
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Left regular representation and partial order

S S S

Partial order: s >t < there is some e € E with se = t,
< tis a restriction of s < st*t=1t

Left regular representation: v:S — B (62 (S)), where
Osx If X € Dgr s
0 otherwise
Reduced C*-algebra: C; (S) := C* ({vs}s) cB(£%(9))
Uniform Roe algebra: Rs:= C* ({fvs}ses,feeoo(S)) cB(£*(9))

VsOx =
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Group coarse geometry

Recall: Cayley graph construction ~ G = (gi!,..., gt!|relations):

e Graph ~ Cay (G,{g1,..-,8n}) :=(V,E),
e Vertices ~ V= G
e Edges ~ E := {(X,g,-*lx) | x € G and izl,...,n}.

(£2,£3)
(1)

!

Z =
Z
Proposition (classical)

The large scale geometry of the Cayley graph of G
does not depend on the generators

Goal: coarse geometry of inverse semigroups
and its relation with C*-properties of C; (S) and Rs
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Infinite distances, and why they are necessary

Remark: we need to consider extended metric spaces:
if xeDgrs={yeS |s*sy=y} then (sx)"(sx)=x"x

and hence x L sx (the converse also holds)

Green'’s relations: 4l H — classes
o * * e
.XﬁyleX:yy bes R —class of &
o xRy if xx* =yy* D-class eer |
e H=L and R .
[ ] D = £ o R

L —class of e3 J

Remark - need of extended metrics

Good distances d:S x S — [0, oo] satisfy that

x'x=y'y e d(x,y) < oo
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Schiitzenberger graphs |I: L-classes

Definition (Schiitzenberger - 1959)
Let S = (K), where K = K*. Given an L-class L c S, let A; be

e the graph whose vertices are the points of L and
e where x,y € L are joined by a k-labeled edge if kx = y.

Likewise, let As = Ueep(s)AL, -

Example: B:=(a,a* | a*a=1)
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e Construct the (left) | | | |

2 2 % 2 _ %2 *3
Cayley graph w.r.t. K al a |a ? ‘r ? T
e Erase directed arrows a  aa* 232 233

I O T

1 2" 3*2 3*3 .



Schiitzenberger graphs Il: right invariance

Remark: not all graphs are group Cayley graphs. However:
Theorem (Stephen - 1990)
{connected graphs} = {Schiitzenberger graphs}



Schiitzenberger graphs Il: right invariance

Remark: not all graphs are group Cayley graphs. However:
Theorem (Stephen - 1990)
{connected graphs} = {Schiitzenberger graphs}

Lemma (right invariance)
Let S = (K). If x € Dss then d (x,sx) < d(s*s,s).
In particular, if xx* =s*s then d (x,sx) =d (s*s,s).

Proof/conseq uence:
ki = ko ke
Loxs o« L., e e



Schiitzenberger graphs Il: right invariance

Remark: not all graphs are group Cayley graphs. However:
Theorem (Stephen - 1990)
{connected graphs} = {Schiitzenberger graphs}

Lemma (right invariance)
Let S = (K). If x € Dss then d (x,sx) < d(s*s,s).
In particular, if xx* =s*s then d (x,sx) =d (s*s,s).

Proof/consequence:
k1 ko ke
Loxs o ... e e
s*s kys*s s=ky...kys*s
ky ko ke
Ly o e

xx* SXX



Schiitzenberger graphs Il: right invariance

Remark: not all graphs are group Cayley graphs. However:
Theorem (Stephen - 1990)
{connected graphs} = {Schiitzenberger graphs}

Lemma (right invariance)
Let S = (K). If x € Dss then d (x,sx) < d(s*s,s).
In particular, if xx* =s*s then d (x,sx) =d (s*s,s).

Proof/conseq uence:
ky ko ke
Loxs o« L., e e
s*s kis*s s=ky...kis*s
ky ko ke
Loz A o e
ky ko kg ks X SX
Lo+ e e

xx* SXX



Schiitzenberger graphs Il: right invariance

Remark: not all graphs are group Cayley graphs. However:
Theorem (Stephen - 1990)
{connected graphs} = {Schiitzenberger graphs}

Lemma (right invariance)
Let S = (K). If x € Dss then d (x,sx) < d(s*s,s).
In particular, if xx* =s*s then d (x,sx) =d (s*s,s).

Proof/consequence:
ki ko ke
Lgxs ,m R
sts ,k1s”s s=ky!. . kis*s
:,"lXX* ,’I ki ko ke

| & s Lex e

1 2 e X sx
Lo 3 S



Schiitzenberger graphs Il: right invariance

Remark: not all graphs are group Cayley graphs. However:
Theorem (Stephen - 1990)
{connected graphs} = {Schiitzenberger graphs}

Lemma (right invariance)
Let S = (K). If x € Dss then d (x,sx) < d(s*s,s).
In particular, if xx* =s*s then d (x,sx) =d (s*s,s).

Proof/conseq uence:
k1 ko ke
Lgss ,‘/N ek o Ty
STS ,4(15*5 S= k[,.'..kls*s
:’l.lXX* ,II /)S --3 kl k2 k[
& o o Lex e
1 2 N X sx
Ly [j'o/\) . o ¢ ,
Xxx* sxx* ’
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Definition & Proposition (Day 1957 & Ara-Lledé-M. 2020)
S is amenable if there is u: P (S) — [0, 1] such that

i (Ds+s) =1 for every se S
(b) pw(B)=wu(sB) for every s € S and B c Ds+s

o is a normalization condition ~ boring

e (b) is dynamical ~ relevant

Theorem (Ara-Lled6-M. 2020)

S has a measure as in (b) < there is e € E and F, c L, such that
|s (Fn N Dsxs) U Fp| nsoo

1 forallseS
|Fl

Consequence: (b) < an L-class has subsets with small boundary



Day’s amenability vs. traces vs. nuclearity

Theorem (Ara-Lledé-M. 2020)
Let S be a unital inverse semigroup. TFAE:

(i) S has a probability measure as in (b).
(i) Rg=C* ({fVS}seS,feé‘x’(S) has an (amenable) trace.
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Day’s amenability vs. traces vs. nuclearity

Theorem (Ara-Lledé-M. 2020)
Let S be a unital inverse semigroup. TFAE:

(i) S has a probability measure as in (b).
(i) Rg=C* ({fVS}seS,feé‘x’(S) has an (amenable) trace.
(iii) As is amenable (as a graph).

Remark: condition can also be plugged above by saying
the trace satisfies ¢ (ve) = 1 for every e € E

WARNING: Day's amenability is not related with nuclearity!
Examples:

e o {0} is Day's amenable but not nuclear

e An example of Nica is nuclear but not Day’s amenable

10
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Schiitzenberger graphs and property A

Definition (Yu - 1999)
(X, d) has property A if for every r,e > 0 there is
& X - 1 (X)] and c > 0 such that supp (£x) € B (x) and
1€ = &yl; < € for every x,y € X such that d (x,y) <r.
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Schiitzenberger graphs and property A

Definition (Yu - 1999)
(X, d) has property A if for every r,e > 0 there is
& X - 1 (X)] and c > 0 such that supp (£x) € B (x) and
1€ = &yl; < € for every x,y € X such that d (x,y) <r.

Remarks:
e Property A generalizes amenability for groups (not in general)
e Non-property A groups are hard to come by

Theorem (Ozawa - 2000)
Let G be a countable group. The following are equivalent:

(1) G has property A.
(2) Rg is nuclear.
(3) C(G) is exact.

11



Property A, nuclearity and exactness for inverse semigroups

Theorem (Lledé, M. - 2021)
Let S = (K) be an inverse semigroup. times, TFAE:

(i) As has property A.

(i) Rs is nuclear.
(i) CF(S) is exact.

12



Property A, nuclearity and exactness for inverse semigroups

Theorem (Lledé, M. - 2021)
Let S = (K) be an inverse semigroup. times, TFAE:

(i) As has property A.
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Proof: (i) = (ii) given &S — 1 (S); the diagram

Rs — H MBC(X) c (7 (5) ® Mq - Rs
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3 (PB.(x) @PB.(x))xes 7 (Bx)xes ™ . Exbxé

xeS
can be shown to be an approximation of id: Rs - Rs
(ii) = (iii) is clear, while for Rs =z C; (As)
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Property A, nuclearity and exactness for inverse semigroups

Theorem (Lledé, M. - 2021)
Let S = (K) be an inverse semigroup. times, TFAE:

(i) As has property A.
(i) Rs is nuclear.
(i) CF(S) is exact.

Proof: (i) = (ii) given &S — 1 (S); the diagram

Rs — H MBC(X) c (7 (5) ® Mq - Rs
xeS

ar (ch(x) a pBC(X))XES ~ (bX)xES = Z;g;bxgx

can be shown to be an approximation of id: Rs - Rs
(ii) = (iii) is clear, while for Rs =z C; (As)

Question: times? is that? 12



5. Having finitely complex local
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Finite labeling I: local structure

Note: Ag = vertices + edges, and edges represent (x, sx)
with x € Dgxs

Problem: S = (N,min) ~ n-m:=min{n, m}

k+1

Key: for large r >0 A F € S labeling the paths in As of length r

13



Finite labeling Il: a picture to top the explanation

Definition (Lled6, M. - 2021)
Let S = (K). We say (S, K) admits a finite labeling if
for any r > 0 there is F € S such that if d (s*s,s) <r
then there is m € F such that ms*s = s.
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Finite labeling Il: a picture to top the explanation

Definition (Lled6, M. - 2021)
Let S = (K). We say (S, K) admits a finite labeling if
for any r > 0 there is F € S such that if d (s*s,s) <r
then there is m € F such that ms*s = s.

Examples:
Finitely generated semigroups
Discrete groups ~ proper and right invariant metric

Cylinder of

radius r

=Ny F = shaded
area

Schiitzenberger

o
I
_ ‘( ® e

graphs of S \
K ' °8 g

14



Finite labeling Ill: importance

Theorem (Lledé, M. - 2021)

Suppose that (S, K) admits a finite labeling. Then:
Rs2l®(S)x,S=C;(Ns)
for a certain canonical action S ~ £ (5).
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Finite labeling Ill: importance

Theorem (Lledé, M. - 2021)

Suppose that (S, K) admits a finite labeling. Then:
Rs2l®(S)x,S=C;(Ns)
for a certain canonical action S ~ £ (5).

Theorem (classical - for groups!)
For arbitrary groups: Rg 2 ¢ (G) x, G = C; (G).

Examples of not FL semigroups: S = (N, min) —
we have Rs = ¢, while £°(S) x, S = C; (As) =£*°

Actually, even more is true:

Theorem (Lledé, M. - 2021)
Rs =z C; (As) if, and only if, (S, K) admits a FL.

15



Finite labelings characterizing the uniform Roe algebra

Theorem (Lledé, M. - 2021)
Rs =z C; (As) if, and only if, (S, K) admits a FL.

Recall C; (As) =C* ({t € B((?(S)) of finite propagation })
Proof:

o If t has finite propagation + (S, K) admits a FL
then ~ t =Y r fsvs, where f; € £ (S)

i.e., we can label the pairs (x,y) with (d,,td,) # 0 as pairs
(x,sx) with se FES. Thus Rs 2 C; (As)

e If not FL ~ construct t of propagation 1 with t ¢ R
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Finite labelings characterizing the uniform Roe algebra

Theorem (Lledé, M. - 2021)
Rs =z C; (As) if, and only if, (S, K) admits a FL.

Recall C; (As) =C* ({t € B((?(S)) of finite propagation })
Proof:

o If t has finite propagation + (S, K) admits a FL
then ~ t =Y r fsvs, where f; € £ (S)

i.e., we can label the pairs (x,y) with (d,,td,) # 0 as pairs
(x,sx) with se FES. Thus Rs 2 C; (As)

e If not FL ~ construct t of propagation 1 with t ¢ R

Thank you for your attention!
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