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1. Inverse semigroups



Inverse semigroups and Wagner-Preston

Definition
S is an inverse semigroup if for every s ∈ S there is a unique s∗ ∈ S

such that ss∗s = s and s∗ss∗ = s∗

Remarks:
• Bicyclic monoid: B = ⟨a, a∗ ∣ a∗a = 1⟩ = {aia∗j ∣ i , j ≥ 0}
• E(S) = {e ∈ S ∣ e2 = e} = {s∗s ∣ s ∈ S} is commutative
• Ds∗s ∶= {x ∈ S ∣ x = s∗sx} = s∗s ⋅ S is the domain of s∗s
• s ∶Ds∗s → Dss∗ , where x ↦ sx is a bijection

Induces the Wagner-Preston representation v ∶S → I (S):
S S

Dt∗t

Dtt∗t ⋅

Ds∗s

S

Dss∗

s ⋅

D(st)∗(st) = t∗ (Dtt∗ ∩Ds∗s)

D(st)(st)∗ =

s (Dtt∗ ∩Ds∗s)
st ⋅

3



Inverse semigroups and Wagner-Preston

Definition
S is an inverse semigroup if for every s ∈ S there is a unique s∗ ∈ S

such that ss∗s = s and s∗ss∗ = s∗

Remarks:
• Bicyclic monoid: B = ⟨a, a∗ ∣ a∗a = 1⟩ = {aia∗j ∣ i , j ≥ 0}

• E(S) = {e ∈ S ∣ e2 = e} = {s∗s ∣ s ∈ S} is commutative
• Ds∗s ∶= {x ∈ S ∣ x = s∗sx} = s∗s ⋅ S is the domain of s∗s
• s ∶Ds∗s → Dss∗ , where x ↦ sx is a bijection

Induces the Wagner-Preston representation v ∶S → I (S):
S S

Dt∗t

Dtt∗t ⋅

Ds∗s

S

Dss∗

s ⋅

D(st)∗(st) = t∗ (Dtt∗ ∩Ds∗s)

D(st)(st)∗ =

s (Dtt∗ ∩Ds∗s)
st ⋅

3



Inverse semigroups and Wagner-Preston

Definition
S is an inverse semigroup if for every s ∈ S there is a unique s∗ ∈ S

such that ss∗s = s and s∗ss∗ = s∗

Remarks:
• Bicyclic monoid: B = ⟨a, a∗ ∣ a∗a = 1⟩ = {aia∗j ∣ i , j ≥ 0}
• E(S) = {e ∈ S ∣ e2 = e} = {s∗s ∣ s ∈ S} is commutative
• Ds∗s ∶= {x ∈ S ∣ x = s∗sx} = s∗s ⋅ S is the domain of s∗s
• s ∶Ds∗s → Dss∗ , where x ↦ sx is a bijection

Induces the Wagner-Preston representation v ∶S → I (S):
S S

Dt∗t

Dtt∗t ⋅

Ds∗s

S

Dss∗

s ⋅

D(st)∗(st) = t∗ (Dtt∗ ∩Ds∗s)

D(st)(st)∗ =

s (Dtt∗ ∩Ds∗s)
st ⋅

3



Inverse semigroups and Wagner-Preston

Definition
S is an inverse semigroup if for every s ∈ S there is a unique s∗ ∈ S

such that ss∗s = s and s∗ss∗ = s∗

Remarks:
• Bicyclic monoid: B = ⟨a, a∗ ∣ a∗a = 1⟩ = {aia∗j ∣ i , j ≥ 0}
• E(S) = {e ∈ S ∣ e2 = e} = {s∗s ∣ s ∈ S} is commutative
• Ds∗s ∶= {x ∈ S ∣ x = s∗sx} = s∗s ⋅ S is the domain of s∗s
• s ∶Ds∗s → Dss∗ , where x ↦ sx is a bijection

Induces the Wagner-Preston representation v ∶S → I (S):
S S

Dt∗t

Dtt∗t ⋅

Ds∗s

S

Dss∗

s ⋅

D(st)∗(st) = t∗ (Dtt∗ ∩Ds∗s)

D(st)(st)∗ =

s (Dtt∗ ∩Ds∗s)
st ⋅

3



Inverse semigroups and Wagner-Preston

Definition
S is an inverse semigroup if for every s ∈ S there is a unique s∗ ∈ S

such that ss∗s = s and s∗ss∗ = s∗

Remarks:
• Bicyclic monoid: B = ⟨a, a∗ ∣ a∗a = 1⟩ = {aia∗j ∣ i , j ≥ 0}
• E(S) = {e ∈ S ∣ e2 = e} = {s∗s ∣ s ∈ S} is commutative
• Ds∗s ∶= {x ∈ S ∣ x = s∗sx} = s∗s ⋅ S is the domain of s∗s
• s ∶Ds∗s → Dss∗ , where x ↦ sx is a bijection

Induces the Wagner-Preston representation v ∶S → I (S):
S S

Dt∗t

Dtt∗t ⋅

Ds∗s

S

Dss∗

s ⋅

D(st)∗(st) = t∗ (Dtt∗ ∩Ds∗s)

D(st)(st)∗ =

s (Dtt∗ ∩Ds∗s)
st ⋅

3



Group coarse geometry

Recall: Cayley graph construction ↝ G = ⟨g±1
1 , . . . ,g±1

n ∣ relations ⟩:

• Graph ↝ Cay (G ,{g1, . . . ,gn}) ∶= (V ,E),

• Vertices ↝ V ∶= G

• Edges ↝ E ∶= {(x ,g±1
i x) ∣ x ∈ G and i = 1, . . . ,n}.

. . .. . . Z = ⟨±2,±3⟩

. . .. . . Z = ⟨±1⟩

Proposition (classical)
The large scale geometry of the Cayley graph of G

does not depend on the generators

Goal: reproduce these constructions for inverse semigroups

4
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2. Schützenberger graphs and
right invariance



Infinite distances, and why they are necessary

Remark: we need to consider extended metric spaces:

if x ∈ Ds∗s = {y ∈ S ∣ s∗sy = y} then (sx)∗ (sx) = x∗x

and hence x L sx (the converse also holds)

Green’s relations:

• xLy if x∗x = y∗y
• xRy if xx∗ = yy∗

• H = L andR
• D = L ○R

D ⊂ S

D-class

● e1

● e2

● e3

● e4

H − classes

L − class of e3

R − class of e2

Remark - need of extended metrics

Good distances d ∶S × S → [0,∞] satisfy that

x∗x = y∗y ⇔ d (x , y) <∞

5
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Schützenberger graphs I: L-classes

Definition (Schützenberger - 1959)

Let S = ⟨K ⟩, where K = K∗. Given an L-class L ⊂ S , let ΛL be

• the graph whose vertices are the points of L and
• where x , y ∈ L are joined by a k-labeled edge if kx = y .

Likewise, let ΛS = ⊔e∈E(S)ΛLe .

"Algorithm":
●

●

Example: B ∶= ⟨a, a∗ ∣ a∗a = 1⟩

1 a∗ a∗2 a∗3

a aa∗ aa∗2 aa∗3

a2

a3

a2a∗

a3a∗

a2a∗2 a2a∗3

a3a∗2 a3a∗3

⋮ ⋮ ⋮ ⋮

. . .

. . .

. . .

. . .

⋰
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Schützenberger graphs II: right invariance

Remark: not all graphs are group Cayley graphs. However:

Theorem (Stephen - 1990)
{connected graphs} = {Schützenberger graphs}

Lemma (right invariance)

Let S = ⟨K ⟩. If x ∈ Ds∗s then d (x , sx) ≤ d (s∗s, s).
In particular, if xx∗ = s∗s then d (x , sx) = d (s∗s, s).

Proof/consequence:

●
s∗s

●
k1s
∗s
. . . . . . ● ●

s = k` . . . k1s
∗s

k1 k2 k`
Ls∗s

●
xx∗

. . . ● ●
sxx∗

k1 k2 k`
Lxx∗

●
x

. . . ● ●
sx

k1 k2 k`
Lx∗x

⋅xx∗ ⋅x

⋅x∗
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3. Property A, and its relation
with exactness



Schützenberger graphs and property A

Definition (Yu - 1999)

(X ,d) has property A if for every r , ε > 0 there is
ξ∶X → `1 (X )

+
1 and c > 0 such that supp (ξx) ⊂ Bc (x) and

∣∣ξx − ξy ∣∣1 ≤ ε for every x , y ∈ X such that d (x , y) ≤ r .

Remarks:

• Property A generalizes amenability for groups (not in general)
• Non-property A groups are hard to come by

Theorem (Ozawa - 2000)
Let G be a countable group. The following are equivalent:

(1) G has property A.
(2) `∞ (G) ⋊r G is a nuclear C*-algebra.
(3) C∗

r (G) is an exact C*-algebra.

8
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Property A, nuclearity and exactness for inverse semigroups

Left regular representation: V ∶S → B (`2S), where

Vsδx =

⎧⎪⎪
⎨
⎪⎪⎩

δsx , if x ∈ Ds∗s

0 otherwise

Reduced C*-algebra: C∗
r (S) ∶= C∗ ({Vs}s∈S) ⊂ B (`2S)

Theorem (Lledó, M. - 2021)

Let S = ⟨K ⟩ be an inverse semigroup.
If ΛS has property A (as a graph), then C∗

r (S) is exact.
The converse holds in some cases.

Proof: direct argument from A ↝ C∗
r (S) exact

Question: when?
Answer: when the local structure of ΛS is not too complex

9
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Question: when?
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4. Having finitely complex local
structures



Finite labeling I: local structure

Note: ΛS = vertices + edges, and edges represent (x , sx)

with x ∈ Ds∗s

Problem: S = (N,min) ↝ n ⋅m ∶= min{n,m}

●
1

<

1
2
3

⋮

k

k + 1
⋮

●
2

<

2
3

⋮

k

k + 1
⋮

●
3

<

3

⋮

k

k + 1
⋮

. . . . . . < ●
k

< ●
k + 1

< . . .

k

k + 1
⋮

k + 1
⋮

Dk = ∪s∈FDs∗s

●
1

< ●
2

< ●
3

< . . . . . . < ●
k

Key: for large r ≥ 0 /∃ F ⋐ S labeling the paths in ΛS of length r
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Finite labeling II: a picture to top the explanation

Definition (Lledó, M. - 2021)

Let S = ⟨K ⟩. We say (S ,K) admits a finite labeling if
for any r ≥ 0 there is F ⋐ S such that if d (s∗s, s) ≤ r

then there is m ∈ F such that ms∗s = s.

Examples:
(1) Finitely generated semigroups
(2) Discrete groups ↝ proper and right invariant metric

Schützenberger
graphs of S

● e1

● e2

● e3

⋮

Cylinder of
radius r

F = shaded
area
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Finite labeling III: importance

Theorem (Lledó, M. - 2021)

Suppose that (S ,K) admits a finite labeling.
Then `∞ (S) ⋊r S = C∗

u (ΛS), for a certain action S ↷ `∞ (S)

Remark: somehow, the Theorem says that if (S ,K) is not FL
then maybe change your generating set K ...

Theorem (classical - for groups!)

For arbitrary groups: `∞ (G) ⋊r G = C∗
u (G).

Actually: the finite labeling allows to see the geometry of S

Theorem (Lledó, M. - 2021)

Suppose that (S ,K) admits a finite labeling. Then:
ΛS has property A ⇔ `∞ (S) ⋊r S is nuclear ⇔ C∗

r (S) is exact

Thank you for your attention. Questions?
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Paterson’s universal groupoid and its amenability

Theorem (Paterson - 1999)

Given S there is GU (S)= {filters ofE (S)} ⋊θ S such that
C∗
r (S) = C∗

r (GU (S)) and C∗ (S) = C∗ (GU (S))

Recall: for arbitrary (discrete) groups:
G is amenable ⇔ C∗

r (G) is nuclear ⇔ C∗
r (G) = C∗ (G)

And this has become a driving force of groupoid amenability:

Theorem (Anantharaman-Delaroche and Renault)

An (étale) groupoid G is amenable ⇔ C∗
r (G) is nuclear.

Question:

• Relation between GU (S) amenable and S amenable?
• How does GU (S) enter the picture?
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Groupoid amenability and property A

However, property A of ΛS ↝ exactness of C∗
r (S):

Proposition (Lledó, M. - 2021)

Let S = ⟨K ⟩ with (S ,K) admitting a finite labeling.
If GU (S) is amenable then ΛS has property A.

Proof: GU (S) amenable ⇔ C∗
r (S) = C∗

r (GU (S)) nuclear

⇒ C∗
r (S) exact ⇔ ΛS has prop. A

Remarks:

• Alternate argument via the definitions involved ↝ not C*
• Is not an equivalence, as F2 has prop. A and is not amenable
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E-unitary semigroups and relation with property A

Recall: G(S) = S/σ, where sσt iff se = te for some e ∈ E (S)

• Known as the maximal homomorphic image of S
• G(S) is always a group, and let σ∶S → G(S) the quotient map

Theorem (Duncan and Namioka - 1978)

S is amenable if, and only if, G(S) is amenable.

However: G(S) loses information of S ↝ might even G(S) = {1}

Definition (classical)

S is E-unitary if σ∶S → G(S) is injective in every L-class.

Theorem (Anantharaman-Delaroche - 2016)

Let S be E-unitary. C∗
r (S) is exact ⇔ G(S) is exact.

15



E-unitary semigroups and relation with property A

Goal: prove Anantharaman-Delaroche’s result geometrically

Theorem (Lledó, M. - 2021)

Let S = ⟨K ⟩ be E-unitary and (S ,K) admit a finite labeling.
ΛS has property A ⇔ G(S) has property A.

(Recall that, by Ozawa, property A = exactness for groups)

Proof ⇒: given ξ∶S → `1 (S)1
+ for S let

ζ ∶G (S)→ `1 (G (S)) , where ζσ(s) (σ (t)) ∶= lim
n→ω

ξsen (ten)

for some e1 ≥ ⋅ ⋅ ⋅ ≥ en ≥ ⋅ ⋅ ⋅ ∈ E (S) is eventually below everything

• Locally G(S) is ΛLe for e sufficiently small
• Hence, the same approx. for ΛS does the trick for G(S)

Proof ⇐: only known via C*-arguments
16



Higson-Lafforgue-Skandalis and Willett’s example

Example: box space without property A
• F2 = ⟨a,b ∣ −⟩ free non-abelian group on 2 elements
• Let {Nk}k∈N be a descending sequence of normal subgroups

of finite index such that ∩k∈NNk = {1}
• S ∶= ⊔k∈NF2/Nk , where [g]i ⋅ [h]j ∶= [gh]min{i ,j}.

Remark:

(1) S is amenable ↝ as it has a 0
(2) S does not have property A ↝ L-classes are complicated
(3) S does not admit a finite labeling ↝ same as (N,min)

●

[e]0

F2/N0

●

[e]1

F2/N1≤

●

[e]2

F2/N2≤

●

[e]3

F2/N3≤

⋯

⋯

⋯

⋰

⋱

S =
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