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Bicyclic monoid: B = (a,a* |a*a=1) = {a'a¥ | i,j >0}
E(S)={eeS|e*=e}={s*s|seS} is commutative
Dss:={x€S|x=5"sx} =s"s-S is the domain of s*s
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Proposition (classical)
The large scale geometry of the Cayley graph of G
does not depend on the generators

Goal: reproduce these constructions for inverse semigroups



2. Schiitzenberger graphs and
right invariance
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Infinite distances, and why they are necessary

Remark: we need to consider extended metric spaces:
if xeDgrs={yeS |s*sy=y} then (sx)"(sx)=x"x

and hence x L sx (the converse also holds)

Green'’s relations: 4l H — classes
H * * e
* Xﬁy IfXX:y y bes R - class of &3
o xRy if xx* = yy* D-class eer |
e H=Land R .
[ ] D = £ o R

L —class of e3 J

Remark - need of extended metrics

Good distances d:S x S — [0, oo] satisfy that

x'x=y'y e d(x,y) < oo
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Definition (Yu - 1999)
(X, d) has property A if for every r,e > 0 there is
& X - 1 (X)] and c > 0 such that supp (£x) € B (x) and
1€ = &yl; < € for every x,y € X such that d (x,y) <r.

Remarks:
e Property A generalizes amenability for groups (not in general)
e Non-property A groups are hard to come by

Theorem (Ozawa - 2000)
Let G be a countable group. The following are equivalent:

(1) G has property A.
(2) £ (G) %, G is a nuclear C*-algebra.
(3) C/(G) is an exact C*-algebra.
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Property A, nuclearity and exactness for inverse semigroups

Left regular representation: V:S — 8(625), where

Vs = 55X, if x € Ds*s
o 0 otherwise

Reduced C*-algebra: C; (S) := C* ({Vs},.5) c B(£2S)

Theorem (Lledd, M. - 2021)

Let S = (K) be an inverse semigroup.
If As has property A (as a graph), then C; (S) is exact.
The converse holds in cases.

Proof: direct argument from A ~ C (S) exact

Question: ?
Answer: the local structure of As is not too complex
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Finite labeling I: local structure

Note: Ag = vertices + edges, and edges represent (x, sx)
with x € Dgxs

Problem: S = (N,min) ~ n-m:=min{n, m}

k+1

Key: for large r >0 A F € S labeling the paths in As of length r

10
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Definition (Lled6, M. - 2021)
Let S = (K). We say (S, K) admits a finite labeling if
for any r > 0 there is F € S such that if d (s*s,s) <r
then there is m € F such that ms*s = s.

Examples:
(1) Finitely generated semigroups
(2) Discrete groups ~ proper and right invariant metric
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Finite labeling Ill: importance

Theorem (Lledé, M. - 2021)

Suppose that (S, K) admits a finite labeling.
Then ¢°°(S) x, S = C; (As), for a certain action S ~ (> (S)

Remark: somehow, the Theorem says that if (S, K) is not FL
then maybe change your generating set K...

Theorem (classical - for groups!)
For arbitrary groups: £ (G) x, G = C;; (G).

Actually: the finite labeling allows to see the geometry of S
Theorem (Lledé, M. - 2021)

Suppose that (S, K) admits a finite labeling. Then:
As has property A < (% (S) %, S is nuclear < C; (S) is exact

Thank you for your attention. 12
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Paterson’s universal groupoid and its amenability

Theorem (Paterson - 1999)

Given S there is Gy (S) = {filters of E (S)} %y S such that
G (S) =G (Gu(S)) and C*(S) = C* (G (5))

Recall: for arbitrary (discrete) groups:
G is amenable < C; (G) is nuclear < C; (G) = C* (G)
And this has become a driving force of groupoid amenability:

Theorem (Anantharaman-Delaroche and Renault)
An (étale) groupoid G is amenable < C; (G) is nuclear.
Question:

e Relation between Gy (S) amenable and S amenable?
e How does Gy (S) enter the picture?

13



Groupoid amenability and property A

However, property A of Ag ~ exactness of C; (S):

Proposition (Lledé, M. - 2021)
Let S = (K) with (S, K) admitting a finite labeling.
If Gy (S) is amenable then As has property A.
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However, property A of Ag ~ exactness of C; (S):

Proposition (Lledé, M. - 2021)
Let S = (K) with (S, K) admitting a finite labeling.
If Gy (S) is amenable then As has property A.
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Groupoid amenability and property A

However, property A of Ag ~ exactness of C; (S):
Proposition (Lledé, M. - 2021)
Let S = (K) with (S, K) admitting a finite labeling.
If Gy (S) is amenable then As has property A.
Proof: Gy (S) amenable < C (S) = C; (G (S)) nuclear
= C; (S) exact < Ag has prop. A

Remarks:

e Alternate argument via the definitions involved ~ not C*
e Is not an equivalence, as [F» has prop. A and is not amenable
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E-unitary semigroups and relation with property A

Recall: G(S) =S/o, where sot iff se = te for some e € E (S5)

e Known as the maximal homomorphic image of S
e G(S) is always a group, and let 0: S — G(S) the quotient map

Theorem (Duncan and Namioka - 1978)
S is amenable if, and only if, G(S) is amenable.

However: G(S) loses information of S ~ might even G(S) = {1}

Definition (classical)

S is E-unitary if 0:S - G(S) is injective in every L-class.

Theorem (Anantharaman-Delaroche - 2016)
Let S be E-unitary. C;(S) is exact < G(S) is exact.

15



E-unitary semigroups and relation with property A

Goal: prove Anantharaman-Delaroche’s result geometrically

Theorem (Lledd, M. - 2021)

Let S = (K) be E-unitary and (S, K) admit a finite labeling.
As has property A < G(S) has property A.

(Recall that, by Ozawa, property A = exactness for groups)
Proof =: given ¢&:S — (1 (5)}r for S let

GG (S) » 11(G(S)), where Gy(s) (0 (£)) = lim Ese, (ter)
for some e; >---> e, >---€ E(S) is eventually below everything

e Locally G(S) is Ay, for e sufficiently small
e Hence, the same approx. for As does the trick for G(S)

Proof <: only known via C*-arguments
16



Higson-Lafforgue-Skandalis and Willett’'s example

Example: box space without property A
e [y =(a,b| -) free non-abelian group on 2 elements
o Let { Ny}, be a descending sequence of normal subgroups
of finite index such that ngeyNg = {1}

e S:= UkeN]FZ/Nky where [g]l : [h]J = [gh]min{i,j}'

Remark:

(1) S is amenable ~ as it has a 0
(2) S does not have property A ~ L-classes are complicated
(3) S does not admit a finite labeling ~ same as (N, min)

Fa/No<F2/Ny<Fa/No<Fa/Nz 17
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