Schützenberger graphs and property A, or how to see exactness of the reduced semigroup C*-algebra

Diego Martínez March 30th, 2021

C*-algebras and geometry of groups and semigroups

University of Oslo

- (1) Inverse semigroups
- (2) Schützenberger graphs and right invariance
- (3) Property A, and its relation with exactness
- (4) Having finite local structure

1. Inverse semigroups

Definition

S is an *inverse semigroup* if for every $s \in S$ there is a unique $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$

Definition

S is an *inverse semigroup* if for every $s \in S$ there is a unique $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$

Remarks:

• Bicyclic monoid: $\mathcal{B} = \langle a, a^* \mid a^*a = 1 \rangle = \{a^i a^{*j} \mid i, j \ge 0\}$

Definition

S is an *inverse semigroup* if for every $s \in S$ there is a unique $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$

Remarks:

• Bicyclic monoid: $\mathcal{B} = \langle a, a^* \mid a^*a = 1 \rangle = \{a^i a^{*j} \mid i, j \ge 0\}$

•
$$E(S) = \{e \in S \mid e^2 = e\} = \{s^* s \mid s \in S\}$$
 is commutative

•
$$D_{s^*s} := \{x \in S \mid x = s^*sx\} = s^*s \cdot S$$
 is the domain of s^*s

•
$$\overline{s: D_{s^*s} \to D_{ss^*}}$$
, where $x \mapsto sx$ is a bijection

Definition

S is an *inverse semigroup* if for every $s \in S$ there is a unique $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$

Remarks:

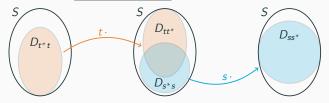
• Bicyclic monoid: $\mathcal{B} = \langle a, a^* \mid a^*a = 1 \rangle = \{a^i a^{*j} \mid i, j \ge 0\}$

•
$$E(S) = \{e \in S \mid e^2 = e\} = \{s^* s \mid s \in S\}$$
 is commutative

•
$$D_{s^*s} := \{x \in S \mid x = s^*sx\} = s^*s \cdot S$$
 is the domain of s^*s

•
$$\overline{s: D_{s^*s} \to D_{ss^*}}$$
, where $x \mapsto sx$ is a bijection

Induces the *Wagner-Preston* representation $v: S \rightarrow \mathcal{I}(S)$:



Definition

S is an *inverse semigroup* if for every $s \in S$ there is a unique $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$

Remarks:

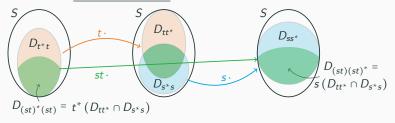
• Bicyclic monoid: $\mathcal{B} = \langle a, a^* \mid a^*a = 1 \rangle = \{a^i a^{*j} \mid i, j \ge 0\}$

•
$$E(S) = \{e \in S \mid e^2 = e\} = \{s^* s \mid s \in S\}$$
 is commutative

•
$$D_{s^*s} := \{x \in S \mid x = s^*sx\} = s^*s \cdot S$$
 is the domain of s^*s

•
$$\overline{s: D_{s^*s} \to D_{ss^*}}$$
, where $x \mapsto sx$ is a bijection

Induces the *Wagner-Preston* representation $v: S \rightarrow \mathcal{I}(S)$:



Group coarse geometry

Recall: Cayley graph construction $\rightsquigarrow G = \langle g_1^{\pm 1}, \dots, g_n^{\pm 1} | \text{ relations } \rangle$:

- Graph \rightsquigarrow Cay $(G, \{g_1, \ldots, g_n\}) \coloneqq (V, E)$,
- Vertices $\rightsquigarrow V := G$
- Edges $\rightsquigarrow E \coloneqq \{(x, g_i^{\pm 1} x) \mid x \in G \text{ and } i = 1, \dots, n\}.$

Group coarse geometry

Recall: Cayley graph construction $\rightsquigarrow G = \langle g_1^{\pm 1}, \dots, g_n^{\pm 1} | \text{ relations } \rangle$:

- Graph \rightsquigarrow Cay $(G, \{g_1, \ldots, g_n\}) \coloneqq (V, E)$,
- Vertices $\rightsquigarrow V := G$
- Edges $\rightsquigarrow E := \{(x, g_i^{\pm 1}x) \mid x \in G \text{ and } i = 1, \dots, n\}.$

$$\cdots \quad \underbrace{\mathbb{Z}} = \langle \pm 2, \pm 3 \rangle$$
$$\cdots \quad \mathbb{Z} = \langle \pm 1 \rangle$$

Group coarse geometry

Recall: Cayley graph construction $\rightsquigarrow G = \langle g_1^{\pm 1}, \ldots, g_n^{\pm 1} | \text{ relations } \rangle$:

- Graph \rightsquigarrow Cay $(G, \{g_1, \ldots, g_n\}) \coloneqq (V, E)$,
- Vertices $\rightsquigarrow V := G$
- Edges $\rightsquigarrow E := \{(x, g_i^{\pm 1}x) \mid x \in G \text{ and } i = 1, \dots, n\}.$

$$\cdots \quad \underbrace{\mathbb{Z}} = \langle \pm 2, \pm 3 \rangle$$
$$\cdots \quad \mathbb{Z} = \langle \pm 1 \rangle$$

Proposition (classical)

The large scale geometry of the Cayley graph of G does <u>not</u> depend on the generators

Goal: reproduce these constructions for inverse semigroups

Remark: we need to consider extended metric spaces:

if
$$x \in D_{s^*s} = \{y \in S \mid s^*sy = y\}$$
 then $(sx)^*(sx) = x^*x$

and hence $x \mathcal{L} sx$ (the converse also holds)

Remark: we need to consider extended metric spaces:

if
$$x \in D_{s^*s} = \{y \in S \mid s^*sy = y\}$$
 then $(sx)^*(sx) = x^*x$

and hence $x \mathcal{L} sx$ (the converse also holds)

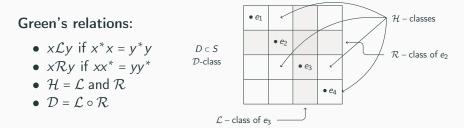
Green's relations:

- $x\mathcal{L}y$ if $x^*x = y^*y$
- $x\mathcal{R}y$ if $xx^* = yy^*$
- $\mathcal{H} = \mathcal{L}$ and \mathcal{R}
- $\mathcal{D} = \mathcal{L} \circ \mathcal{R}$

Remark: we need to consider extended metric spaces:

if
$$x \in D_{s^*s} = \{y \in S \mid s^*sy = y\}$$
 then $(sx)^*(sx) = x^*x$

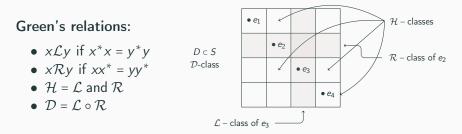
and hence $X \mathcal{L} s x$ (the converse also holds)



Remark: we need to consider *extended* metric spaces:

if
$$x \in D_{s^*s} = \{y \in S \mid s^*sy = y\}$$
 then $(sx)^*(sx) = x^*x$

and hence $x \mathcal{L} sx$ (the converse also holds)



Remark - need of extended metrics

Good distances $d: S \times S \rightarrow [0, \infty]$ satisfy that

$$x^*x = y^*y \Leftrightarrow d(x,y) < \infty$$

Definition (Schützenberger - 1959)

Let $S = \langle K \rangle$, where $K = K^*$. Given an \mathcal{L} -class $L \subset S$, let Λ_L be

- the graph whose vertices are the points of L and
- where $x, y \in L$ are joined by a k-labeled edge if kx = y.

Likewise, let $\Lambda_S = \sqcup_{e \in E(S)} \Lambda_{L_e}$.

Definition (Schützenberger - 1959)

Let $S = \langle K \rangle$, where $K = K^*$. Given an \mathcal{L} -class $L \subset S$, let Λ_L be

- the graph whose vertices are the points of L and
- where $x, y \in L$ are joined by a k-labeled edge if kx = y.

```
Likewise, let \Lambda_S = \sqcup_{e \in E(S)} \Lambda_{L_e}.
```

"Algorithm":

- Construct the (left)
- Cayley graph w.r.t. K
- Erase directed arrows

Definition (Schützenberger - 1959)

Let $S = \langle K \rangle$, where $K = K^*$. Given an \mathcal{L} -class $L \subset S$, let Λ_L be

- the graph whose vertices are the points of L and
- where $x, y \in L$ are joined by a k-labeled edge if kx = y.

Likewise, let $\Lambda_S = \sqcup_{e \in E(S)} \Lambda_{L_e}$.

Example: $\mathcal{B} \coloneqq \langle a, a^* \mid a^*a = 1 \rangle$

"Algorithm":

• Construct the (left)

Cayley graph w.r.t. K

• Erase directed arrows

Definition (Schützenberger - 1959)

Let $S = \langle K \rangle$, where $K = K^*$. Given an \mathcal{L} -class $L \subset S$, let Λ_L be

- the graph whose vertices are the points of L and
- where $x, y \in L$ are joined by a k-labeled edge if kx = y.

Likewise, let $\Lambda_S = \sqcup_{e \in E(S)} \Lambda_{L_e}$.

Example: $\mathcal{B} \coloneqq \langle a, a^* \mid a^*a = 1 \rangle$					
(left) t. <i>K</i>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·			
arrows	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				

"Algorithm":

- Construct the (left) Cayley graph w.r.t. *K*
- Erase directed arrows

Schützenberger graphs I: *L*-classes

Definition (Schützenberger - 1959)

Let $S = \langle K \rangle$, where $K = K^*$. Given an \mathcal{L} -class $L \subset S$, let Λ_I be

- the graph whose vertices are the points of L and
- where $x, y \in L$ are joined by a k-labeled edge if kx = y.

Likewise, let $\Lambda_S = \sqcup_{e \in E(S)} \Lambda_{L_e}$.

	Example: $\mathcal{B} \coloneqq \langle a, a^* \mid a^*a = 1 \rangle$			
"Algorithm":	$a^3 a^3 a^* a^3 a^{*2} a^3 a^{*3} \cdots$			
• Construct the (left)				
Cayley graph w.r.t. K	$a^2 a^2 a^* a^2 a^{*2} a^2 a^{*3} \cdots$			
• Erase directed arrows	, a aa* aa ^{*2} aa ^{*3} 			
	$ \qquad \qquad \qquad \\ 1 \longrightarrow a^* \longrightarrow a^{*2} \longrightarrow a^{*3} \ldots$			

Definition (Schützenberger - 1959)

Let $S = \langle K \rangle$, where $K = K^*$. Given an \mathcal{L} -class $L \subset S$, let Λ_L be

- the graph whose vertices are the points of L and
- where $x, y \in L$ are joined by a k-labeled edge if kx = y.

Likewise, let $\Lambda_S = \sqcup_{e \in E(S)} \Lambda_{L_e}$.

	Example: $\mathcal{B} \coloneqq \langle a, a^* \mid a^*a = 1 \rangle$	
	E E E E Z	
eft) K	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
OWS	$\begin{array}{cccc} a & aa^* & aa^{*2} & aa^{*3} & \dots \\ & & & & & \\ & & & & & \\ 1 & \longrightarrow a^* \longrightarrow a^{*2} \longrightarrow a^{*3} & \dots \end{array}$	

"Algorithm":

- Construct the (left) Cayley graph w.r.t. *K*
- Erase directed arrows

Schützenberger graphs I: *L*-classes

Definition (Schützenberger - 1959)

Let $S = \langle K \rangle$, where $K = K^*$. Given an \mathcal{L} -class $L \subset S$, let Λ_I be

- the graph whose vertices are the points of L and
- where $x, y \in L$ are joined by a k-labeled edge if kx = y.

Likewise, let $\Lambda_S = \sqcup_{e \in E(S)} \Lambda_{L_e}$.

	Example: $\mathcal{B} \coloneqq \langle a, a^* \mid a^*a = 1 \rangle$				
	:	÷	÷	÷ .*	
"Algorithm":	a ³	a ³ a*	a ³ a*2	a ³ a* ³	
• Construct the (left)					
Cayley graph w.r.t. <i>K</i>	a ²	a ² a*	a ² a*2	a ² a* ³ ···	
• Erase directed arrows	a	aa*	aa* ²	aa ^{*3} · · ·	
	1	a^*	a*2	a ^{*3}	

Schützenberger graphs I: *L*-classes

Definition (Schützenberger - 1959)

Let $S = \langle K \rangle$, where $K = K^*$. Given an \mathcal{L} -class $L \subset S$, let Λ_L be

- the graph whose vertices are the points of L and
- where $x, y \in L$ are joined by a k-labeled edge if kx = y.

Likewise, let $\Lambda_S = \sqcup_{e \in E(S)} \Lambda_{L_e}$.

	Example: £	3 := (a, a* .	$a^*a = 1$
	:	÷	÷	÷ .*
"Algorithm":	a ³	a ³ a*	a ³ a*2 a	a ³ a* ³
• Construct the (left)				
Cayley graph w.r.t. K	a ²	a ² a*	a ² a* ² a	a ² a ^{*3}
• Erase directed arrows	a	aa*	aa ^{*2}	aa ^{*3} · · ·
	1	a*	a*2	a* ³

Remark: not all graphs are group Cayley graphs. However:

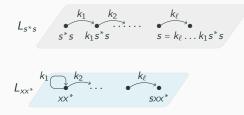
Theorem (Stephen - 1990)

{connected graphs} = {Schützenberger graphs}

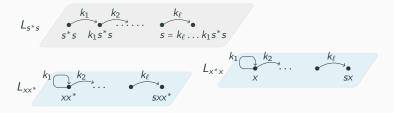
Remark: not all graphs are group Cayley graphs. However: Theorem (Stephen - 1990) {connected graphs} = {Schützenberger graphs} Lemma (right invariance) Let $S = \langle K \rangle$. If $x \in D_{s^*s}$ then $d(x, sx) \leq d(s^*s, s)$. In particular, if $xx^* = s^*s$ then $d(x, sx) = d(s^*s, s)$.

$$L_{s^*s} \xrightarrow{k_1 \quad k_2 \quad \dots \quad k_{\ell}}_{s^*s \quad k_1s^*s} \xrightarrow{s = k_{\ell} \dots \quad k_1s^*s}$$

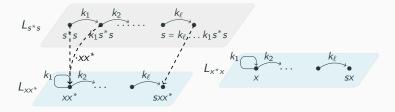
Remark: not all graphs are group Cayley graphs. However: Theorem (Stephen - 1990) {connected graphs} = {Schützenberger graphs} Lemma (right invariance) Let $S = \langle K \rangle$. If $x \in D_{s^*s}$ then $d(x, sx) \leq d(s^*s, s)$. In particular, if $xx^* = s^*s$ then $d(x, sx) = d(s^*s, s)$.



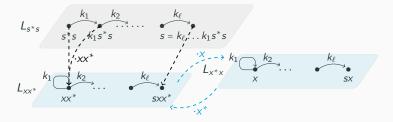
Remark: not all graphs are group Cayley graphs. However: Theorem (Stephen - 1990) {connected graphs} = {Schützenberger graphs} Lemma (right invariance) Let $S = \langle K \rangle$. If $x \in D_{s^*s}$ then $d(x, sx) \le d(s^*s, s)$. In particular, if $xx^* = s^*s$ then $d(x, sx) = d(s^*s, s)$.



Remark: not all graphs are group Cayley graphs. However: Theorem (Stephen - 1990) {connected graphs} = {Schützenberger graphs} Lemma (right invariance) Let $S = \langle K \rangle$. If $x \in D_{s^*s}$ then $d(x, sx) \le d(s^*s, s)$. In particular, if $xx^* = s^*s$ then $d(x, sx) = d(s^*s, s)$.



Remark: not all graphs are group Cayley graphs. However: Theorem (Stephen - 1990) {connected graphs} = {Schützenberger graphs} Lemma (right invariance) Let $S = \langle K \rangle$. If $x \in D_{s^*s}$ then $d(x, sx) \le d(s^*s, s)$. In particular, if $xx^* = s^*s$ then $d(x, sx) = d(s^*s, s)$.



3. Property A, and its relation with exactness

Schützenberger graphs and property A

Definition (Yu - 1999)

(X, d) has property A if for every $r, \varepsilon > 0$ there is $\xi: X \to \ell^{\overline{1}}(X)_{1}^{+}$ and c > 0 such that supp $(\xi_{x}) \subset B_{c}(x)$ and $||\xi_{x} - \xi_{y}||_{1} \le \varepsilon$ for every $x, y \in X$ such that $d(x, y) \le r$.

Schützenberger graphs and property A

Definition (Yu - 1999)

(X, d) has property A if for every $r, \varepsilon > 0$ there is $\xi: X \to \ell^{\overline{1}}(X)_{1}^{+}$ and c > 0 such that supp $(\xi_{x}) \subset B_{c}(x)$ and $||\xi_{x} - \xi_{y}||_{1} \le \varepsilon$ for every $x, y \in X$ such that $d(x, y) \le r$.

Remarks:

- Property A generalizes amenability for groups (not in general)
- Non-property A groups are hard to come by

Schützenberger graphs and property A

Definition (Yu - 1999)

(X, d) has property A if for every $r, \varepsilon > 0$ there is $\xi: X \to \ell^{\overline{1}}(X)_{1}^{+}$ and c > 0 such that supp $(\xi_{x}) \subset B_{c}(x)$ and $||\xi_{x} - \xi_{y}||_{1} \le \varepsilon$ for every $x, y \in X$ such that $d(x, y) \le r$.

Remarks:

- Property A generalizes amenability for groups (not in general)
- Non-property A groups are hard to come by

Theorem (Ozawa - 2000)

Let G be a countable group. The following are equivalent:

Property A, nuclearity and exactness for inverse semigroups

Left regular representation: $V: S \rightarrow \mathcal{B}(\ell^2 S)$, where $V_s \delta_x = \begin{cases} \delta_{sx}, & \text{if } x \in D_{s^*s} \\ 0 & \text{otherwise} \end{cases}$

Reduced C*-algebra: $C_r^*(S) \coloneqq C^*(\{V_s\}_{s\in S}) \subset \mathcal{B}(\ell^2 S)$

Property A, nuclearity and exactness for inverse semigroups

Left regular representation: $V: S \rightarrow \mathcal{B}(\ell^2 S)$, where $V_s \delta_x = \begin{cases} \delta_{sx}, & \text{if } x \in D_{s^*s} \\ 0 & \text{otherwise} \end{cases}$

Reduced C*-algebra: $C_r^*(S) \coloneqq C^*(\{V_s\}_{s \in S}) \subset \mathcal{B}(\ell^2 S)$

Theorem (Lledó, M. - 2021)

Let $S = \langle K \rangle$ be an inverse semigroup.

If Λ_S has property A (as a graph), then $C_r^*(S)$ is exact.

Left regular representation: $V: S \rightarrow \mathcal{B}(\ell^2 S)$, where $V_s \delta_x = \begin{cases} \delta_{sx}, & \text{if } x \in D_{s^*s} \\ 0 & \text{otherwise} \end{cases}$

Reduced C*-algebra: $C_r^*(S) \coloneqq C^*(\{V_s\}_{s \in S}) \subset \mathcal{B}(\ell^2 S)$

Theorem (Lledó, M. - 2021) Let $S = \langle K \rangle$ be an inverse semigroup. If Λ_S has property A (as a graph), then $C_r^*(S)$ is exact. The converse holds in *some* cases.

Left regular representation: $V: S \rightarrow \mathcal{B}(\ell^2 S)$, where $V_s \delta_x = \begin{cases} \delta_{sx}, & \text{if } x \in D_{s^*s} \\ 0 & \text{otherwise} \end{cases}$

Reduced C*-algebra: $C_r^*(S) \coloneqq C^*(\{V_s\}_{s \in S}) \subset \mathcal{B}(\ell^2 S)$

Theorem (Lledó, M. - 2021) Let $S = \langle K \rangle$ be an inverse semigroup. If Λ_S has property A (as a graph), then $C_r^*(S)$ is exact. The converse holds in *some* cases.

Proof: direct argument from A $\sim C_r^*(S)$ exact

Left regular representation: $V: S \rightarrow \mathcal{B}(\ell^2 S)$, where $V_s \delta_x = \begin{cases} \delta_{sx}, & \text{if } x \in D_{s^*s} \\ 0 & \text{otherwise} \end{cases}$

Reduced C*-algebra: $C_r^*(S) \coloneqq C^*(\{V_s\}_{s \in S}) \subset \mathcal{B}(\ell^2 S)$

Theorem (Lledó, M. - 2021) Let $S = \langle K \rangle$ be an inverse semigroup. If Λ_S has property A (as a graph), then $C_r^*(S)$ is exact. The converse holds in *some* cases.

Proof: direct argument from A $\sim C_r^*(S)$ exact

Question: when?

Left regular representation: $V: S \rightarrow \mathcal{B}(\ell^2 S)$, where $V_s \delta_x = \begin{cases} \delta_{sx}, & \text{if } x \in D_{s^*s} \\ 0 & \text{otherwise} \end{cases}$

Reduced C*-algebra: $C_r^*(S) \coloneqq C^*(\{V_s\}_{s \in S}) \subset \mathcal{B}(\ell^2 S)$

Theorem (Lledó, M. - 2021) Let $S = \langle K \rangle$ be an inverse semigroup. If Λ_S has property A (as a graph), then $C_r^*(S)$ is exact. The converse holds in *some* cases.

Proof: direct argument from A $\sim C_r^*(S)$ exact

Question: when?

Answer: when the local structure of Λ_S is not too complex

4. Having finitely complex local structures

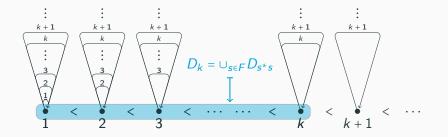
Note: Λ_S = vertices + edges, and edges represent (*x*, *sx*)

Note: Λ_S = vertices + edges, and edges represent (x, sx)with $x \in D_{s^*s}$

Problem: $S = (\mathbb{N}, \min) \rightsquigarrow n \cdot m := \min\{n, m\}$

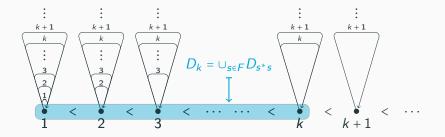
Note: Λ_S = vertices + edges, and edges represent (x, sx)with $x \in D_{s^*s}$

<u>Problem:</u> $S = (\mathbb{N}, \min) \rightsquigarrow n \cdot m := \min\{n, m\}$



Note: Λ_S = vertices + edges, and edges represent (x, sx)with $x \in D_{s^*s}$

<u>Problem</u>: $S = (\mathbb{N}, \min) \rightsquigarrow n \cdot m \coloneqq \min\{n, m\}$



Key: for large $r \ge 0 \not\supseteq F \Subset S$ labeling the paths in Λ_S of length r

Finite labeling II: a picture to top the explanation

Definition (Lledó, M. - 2021)

Let $S = \langle K \rangle$. We say (S, K) admits a *finite labeling* if for any $r \ge 0$ there is $F \Subset S$ such that if $d(s^*s, s) \le r$ then there is $m \in F$ such that $ms^*s = s$.

Finite labeling II: a picture to top the explanation

Definition (Lledó, M. - 2021)

Let $S = \langle K \rangle$. We say (S, K) admits a *finite labeling* if for any $r \ge 0$ there is $F \Subset S$ such that if $d(s^*s, s) \le r$ then there is $m \in F$ such that $ms^*s = s$.

Examples:

- (1) Finitely generated semigroups
- (2) Discrete groups ~> proper and right invariant metric

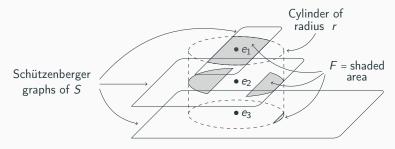
Finite labeling II: a picture to top the explanation

Definition (Lledó, M. - 2021)

Let $S = \langle K \rangle$. We say (S, K) admits a *finite labeling* if for any $r \ge 0$ there is $F \Subset S$ such that if $d(s^*s, s) \le r$ then there is $m \in F$ such that $ms^*s = s$.

Examples:

- (1) Finitely generated semigroups
- (2) Discrete groups ~> proper and right invariant metric



Theorem (Lledó, M. - 2021)

Suppose that (S, K) admits a finite labeling.

Then $\ell^{\infty}(S) \rtimes_{r} S = C_{u}^{*}(\Lambda_{S})$, for a certain action $S \curvearrowright \ell^{\infty}(S)$

Theorem (Lledó, M. - 2021)

Suppose that (S, K) admits a finite labeling. Then $\ell^{\infty}(S) \rtimes_r S = C_u^*(\Lambda_S)$, for a certain action $S \sim \ell^{\infty}(S)$

Remark: somehow, the Theorem says that if (S, K) is <u>not</u> FL then maybe change your generating set K...

Theorem (classical - for groups!)

For arbitrary groups: $\ell^{\infty}(G) \rtimes_{r} G = C_{u}^{*}(G)$.

Theorem (Lledó, M. - 2021)

Suppose that (S, K) admits a finite labeling. Then $\ell^{\infty}(S) \rtimes_r S = C_u^*(\Lambda_S)$, for a certain action $S \sim \ell^{\infty}(S)$

Remark: somehow, the Theorem says that if (S, K) is <u>not</u> FL then maybe change your generating set K...

Theorem (classical - for groups!)

For arbitrary groups: $\ell^{\infty}(G) \rtimes_{r} G = C_{u}^{*}(G)$.

Actually: the finite labeling allows to see the geometry of S

Theorem (Lledó, M. - 2021)

Suppose that (S, K) admits a finite labeling. Then $\ell^{\infty}(S) \rtimes_r S = C_u^*(\Lambda_S)$, for a certain action $S \sim \ell^{\infty}(S)$

Remark: somehow, the Theorem says that if (S, K) is <u>not</u> FL then maybe change your generating set K...

Theorem (classical - for groups!)

For arbitrary groups: $\ell^{\infty}(G) \rtimes_{r} G = C_{u}^{*}(G)$.

Actually: the finite labeling allows to see the geometry of S

Theorem (Lledó, M. - 2021)

Suppose that (S, K) admits a finite labeling. Then:

 Λ_{S} has property $A \Leftrightarrow \ell^{\infty}(S) \rtimes_{r} S$ is nuclear $\Leftrightarrow C_{r}^{*}(S)$ is exact

Theorem (Lledó, M. - 2021)

Suppose that (S, K) admits a finite labeling. Then $\ell^{\infty}(S) \rtimes_r S = C_u^*(\Lambda_S)$, for a certain action $S \sim \ell^{\infty}(S)$

Remark: somehow, the Theorem says that if (S, K) is <u>not</u> FL then maybe change your generating set K...

Theorem (classical - for groups!)

For arbitrary groups: $\ell^{\infty}(G) \rtimes_{r} G = C_{u}^{*}(G)$.

Actually: the finite labeling allows to see the geometry of S

Theorem (Lledó, M. - 2021)

Suppose that (S, K) admits a finite labeling. Then:

 Λ_{S} has property $A \Leftrightarrow \ell^{\infty}(S) \rtimes_{r} S$ is nuclear $\Leftrightarrow C_{r}^{*}(S)$ is exact

Thank you for your attention. Questions?

Paterson's universal groupoid and its amenability

Theorem (Paterson - 1999)

Given S there is $G_{\mathcal{U}}(S) = \{ \text{filters of } E(S) \} \rtimes_{\theta} S$ such that $C_r^*(S) = C_r^*(G_{\mathcal{U}}(S))$ and $C^*(S) = C^*(G_{\mathcal{U}}(S))$

Paterson's universal groupoid and its amenability

Theorem (Paterson - 1999)

Given S there is $G_{\mathcal{U}}(S) = \{ \text{filters of } E(S) \} \rtimes_{\theta} S$ such that $C_r^*(S) = C_r^*(G_{\mathcal{U}}(S))$ and $C^*(S) = C^*(G_{\mathcal{U}}(S))$

Recall: for arbitrary (discrete) groups:

G is amenable $\Leftrightarrow C_r^*(G)$ is nuclear $\Leftrightarrow C_r^*(G) = C^*(G)$ And this has become a driving force of groupoid amenability:

Theorem (Anantharaman-Delaroche and Renault) An (étale) groupoid \mathcal{G} is amenable $\Leftrightarrow C_r^*(\mathcal{G})$ is nuclear.

Paterson's universal groupoid and its amenability

Theorem (Paterson - 1999)

Given S there is $G_{\mathcal{U}}(S) = \{ \text{filters of } E(S) \} \rtimes_{\theta} S$ such that $C_r^*(S) = C_r^*(G_{\mathcal{U}}(S))$ and $C^*(S) = C^*(G_{\mathcal{U}}(S))$

Recall: for arbitrary (discrete) groups:

G is amenable $\Leftrightarrow C_r^*(G)$ is nuclear $\Leftrightarrow C_r^*(G) = C^*(G)$ And this has become a driving force of groupoid amenability:

Theorem (Anantharaman-Delaroche and Renault) An (étale) groupoid \mathcal{G} is amenable $\Leftrightarrow C_r^*(\mathcal{G})$ is nuclear.

Question:

- Relation between $G_{\mathcal{U}}(S)$ amenable and S amenable?
- How does $G_{\mathcal{U}}(S)$ enter the picture?

However, property A of $\Lambda_S \rightsquigarrow$ exactness of $C_r^*(S)$:

Proposition (Lledó, M. - 2021)

Let $S = \langle K \rangle$ with (S, K) admitting a finite labeling. If $G_{\mathcal{U}}(S)$ is amenable then Λ_S has property A.

14

However, property A of $\Lambda_S \rightsquigarrow$ exactness of $C_r^*(S)$:

Proposition (Lledó, M. - 2021)

Let $S = \langle K \rangle$ with (S, K) admitting a finite labeling. If $G_{\mathcal{U}}(S)$ is amenable then Λ_S has property A.

Proof: $G_{\mathcal{U}}(S)$ amenable $\Leftrightarrow C_r^*(S) = C_r^*(G_{\mathcal{U}}(S))$ nuclear $\Rightarrow C_r^*(S)$ exact $\Leftrightarrow \Lambda_S$ has prop. A However, property A of $\Lambda_S \rightsquigarrow$ exactness of $C_r^*(S)$:

Proposition (Lledó, M. - 2021)

Let $S = \langle K \rangle$ with (S, K) admitting a finite labeling. If $G_{\mathcal{U}}(S)$ is amenable then Λ_S has property A.

Proof: $G_{\mathcal{U}}(S)$ amenable $\Leftrightarrow C_r^*(S) = C_r^*(G_{\mathcal{U}}(S))$ nuclear $\Rightarrow C_r^*(S)$ exact $\Leftrightarrow \Lambda_S$ has prop. A

Remarks:

- Alternate argument via the definitions involved \sim not C*
- Is <u>not</u> an equivalence, as \mathbb{F}_2 has prop. A and is not amenable

E-unitary semigroups and relation with property A

Recall: $G(S) = S/\sigma$, where $s\sigma t$ iff se = te for some $e \in E(S)$

- Known as the maximal homomorphic image of S
- G(S) is always a group, and let $\sigma: S \to G(S)$ the quotient map

Theorem (Duncan and Namioka - 1978) S is amenable if, and only if, G(S) is amenable.

However: G(S) loses information of $S \rightsquigarrow might even G(S) = \{1\}$

Definition (classical)

S is *E*-unitary if $\sigma: S \to G(S)$ is injective in every \mathcal{L} -class.

Theorem (Anantharaman-Delaroche - 2016) Let S be E-unitary. $C_r^*(S)$ is exact $\Leftrightarrow G(S)$ is exact.

E-unitary semigroups and relation with property A

Goal: prove Anantharaman-Delaroche's result geometrically **Theorem (Lledó, M. - 2021)** Let $S = \langle K \rangle$ be E-unitary and (S, K) admit a finite labeling. Λ_S has property $A \Leftrightarrow G(S)$ has property A.

(Recall that, by Ozawa, property A = exactness for groups) **Proof** \Rightarrow : given $\xi: S \to \ell^1(S)^1_+$ for S let $\zeta: G(S) \to \ell^1(G(S))$, where $\zeta_{\sigma(s)}(\sigma(t)) \coloneqq \lim_{n \to \omega} \xi_{se_n}(te_n)$

for some $e_1 \geq \cdots \geq e_n \geq \cdots \in E(S)$ is eventually below everything

- Locally G(S) is Λ_{L_e} for *e* sufficiently small
- Hence, the same approx. for Λ_S does the trick for G(S)

Proof ⇐: only known via C*-arguments

Higson-Lafforgue-Skandalis and Willett's example

Example: box space without property A

- $\mathbb{F}_2 = \langle a, b \mid \rangle$ free non-abelian group on 2 elements
- Let $\{N_k\}_{k \in \mathbb{N}}$ be a descending sequence of normal subgroups of finite index such that $\cap_{k \in \mathbb{N}} N_k = \{1\}$
- $S := \bigsqcup_{k \in \mathbb{N}} \mathbb{F}_2 / N_k$, where $[g]_i \cdot [h]_j := [gh]_{\min\{i,j\}}$.

Remark:

- (1) S is amenable \rightsquigarrow as it has a 0
- (2) S does not have property A $\sim \mathcal{L}$ -classes are complicated
- (3) S does not admit a finite labeling \rightsquigarrow same as (\mathbb{N} , min)