C* vs coarse properties of inverse semigroups

Diego Martínez – WWU Münster

October 16th, 2021

diego.martinez@uni-muenster.de

Analysis seminar - University of Glasgow

Based on joint work with Pere Ara and Fernando Lledó

Outline

- (1) Inverse semigroups
- (2) Schützenberger graphs and right invariance
- (3) Day's amenability vs. nuclearity
- (4) Property A vs. exactness
- (5) Having finite local structure

1. Inverse semigroups

Definition

S is an <u>inverse semigroup</u> if for every $s \in S$ there is a unique $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$

Definition

S is an <u>inverse semigroup</u> if for every $s \in S$ there is a unique $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$

Remarks:

• Bicyclic monoid: $\mathcal{B} = \langle a, a^* \mid a^*a = 1 \rangle = \{a^i a^{*j} \mid i, j \ge 0\}$

3

Definition

S is an <u>inverse semigroup</u> if for every $s \in S$ there is a unique $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$

Remarks:

- Bicyclic monoid: $\mathcal{B} = \langle a, a^* \mid a^*a = 1 \rangle = \{a^i a^{*j} \mid i, j \geq 0\}$
- $E = \{e \in S \mid e^2 = e\} = \{s^*s \mid s \in S\}$ is commutative
- $D_{s^*s} := \{x \in S \mid x = s^*sx\} = s^*s \cdot S \text{ is the } \underline{domain of } \underline{s}$
- $\overline{s: D_{s^*s} \to D_{ss^*}}$, where $x \mapsto sx$ is a bijection

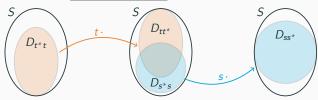
Definition

S is an <u>inverse semigroup</u> if for every $s \in S$ there is a unique $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$

Remarks:

- Bicyclic monoid: $\mathcal{B} = \langle a, a^* \mid a^*a = 1 \rangle = \{a^i a^{*j} \mid i, j \geq 0\}$
- $E = \{e \in S \mid e^2 = e\} = \{s^*s \mid s \in S\}$ is commutative
- $D_{s^*s} := \{x \in S \mid x = s^*sx\} = s^*s \cdot S \text{ is the } \underline{domain of } \underline{s}$
- $\overline{s: D_{s^*s} \to D_{ss^*}}$, where $x \mapsto sx$ is a bijection

Induces the *Wagner-Preston* representation $v: S \to \mathcal{I}(S)$:



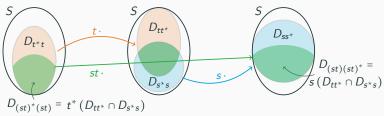
Definition

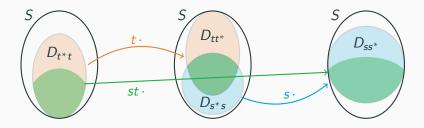
S is an <u>inverse semigroup</u> if for every $s \in S$ there is a unique $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$

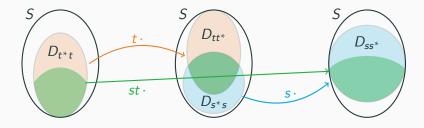
Remarks:

- Bicyclic monoid: $\mathcal{B} = \langle a, a^* \mid a^*a = 1 \rangle = \{a^i a^{*j} \mid i, j \geq 0\}$
- $E = \{e \in S \mid e^2 = e\} = \{s^*s \mid s \in S\}$ is commutative
- $D_{s^*s} := \{x \in S \mid x = s^*sx\} = s^*s \cdot S \text{ is the } \underline{domain of } \underline{s}$
- $\overline{s: D_{s^*s} \to D_{ss^*}}$, where $x \mapsto sx$ is a bijection

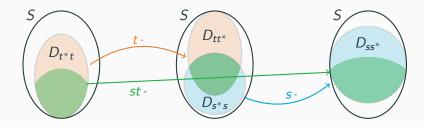
Induces the <u>Wagner-Preston</u> representation $v: S \to \mathcal{I}(S)$:







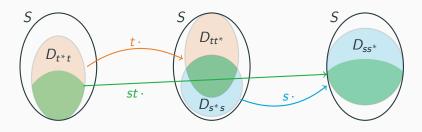
Partial order: $s \ge t \Leftrightarrow$ there is some $e \in E$ with se = t, $\Leftrightarrow t$ is a *restriction* of $s \Leftrightarrow st^*t = t$



Partial order: $s \ge t \Leftrightarrow$ there is some $e \in E$ with se = t, $\Leftrightarrow t$ is a restriction of $s \Leftrightarrow st^*t = t$

Left regular representation: $v: S \to \mathcal{B}(\ell^2(S))$, where

$$v_{s}\delta_{x} = \begin{cases} \delta_{sx} & \text{if } x \in D_{s^{*}s} \\ 0 & \text{otherwise} \end{cases}$$



Partial order: $s \ge t \Leftrightarrow$ there is some $e \in E$ with se = t, $\Leftrightarrow t$ is a restriction of $s \Leftrightarrow st^*t = t$

Left regular representation: $v: S \to \mathcal{B}\left(\ell^2(S)\right)$, where

$$v_{s}\delta_{x} = \begin{cases} \delta_{sx} & \text{if } x \in D_{s^{*}s} \\ 0 & \text{otherwise} \end{cases}$$

Reduced C*-algebra:
$$C_r^*(S) := C^*(\{v_s\}_{s \in S}) \subset \mathcal{B}(\ell^2(S))$$

$$\underline{\text{Uniform Roe algebra:}} \; \mathcal{R}_{S} \coloneqq C^{*} \left(\{ fv_{s} \}_{s \in S, f \in \ell^{\infty}(S)} \right) \quad \subset \mathcal{B} \left(\ell^{2}(S) \right)$$

Group coarse geometry

Recall: Cayley graph construction \Rightarrow $G = \langle g_1^{\pm 1}, \dots, g_n^{\pm 1} | \text{relations} \rangle$:

- Graph \rightsquigarrow Cay $(G, \{g_1, \ldots, g_n\}) \coloneqq (V, E)$,
- Vertices $\rightsquigarrow V := G$
- Edges $\Rightarrow E := \{(x, g_i^{\pm 1} x) \mid x \in G \text{ and } i = 1, \dots, n\}.$

Group coarse geometry

Recall: Cayley graph construction \Rightarrow $G = \langle g_1^{\pm 1}, \dots, g_n^{\pm 1} | \text{relations} \rangle$:

- Graph \rightsquigarrow Cay $(G, \{g_1, \ldots, g_n\}) \coloneqq (V, E)$,
- Vertices $\rightsquigarrow V := G$
- Edges $\rightarrow E := \{(x, g_i^{\pm 1}x) \mid x \in G \text{ and } i = 1, \dots, n\}.$

$$\cdots$$
 $\mathbb{Z} = \langle \pm 2, \pm 3 \rangle$

$$\cdots \quad \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \cdots \quad \mathbb{Z} = \langle \pm 1 \rangle$$

Group coarse geometry

Recall: Cayley graph construction \Rightarrow $G = \langle g_1^{\pm 1}, \dots, g_n^{\pm 1} | \text{relations} \rangle$:

- Graph \rightsquigarrow Cay $(G, \{g_1, \ldots, g_n\}) \coloneqq (V, E)$,
- Vertices $\rightsquigarrow V := G$
- Edges $\rightarrow E := \{(x, g_i^{\pm 1}x) \mid x \in G \text{ and } i = 1, \dots, n\}.$

$$\cdots$$
 $\mathbb{Z} = \langle \pm 2, \pm 3 \rangle$ \cdots $\mathbb{Z} = \langle \pm 1, \pm 3 \rangle$

Proposition (classical)

The large scale geometry of the Cayley graph of G does <u>not</u> depend on the generators

Goal: coarse geometry of inverse semigroups and its relation with C*-properties of $C_r^*(S)$ and \mathcal{R}_S

right invariance

2. Schützenberger graphs and

Remark: we need to consider extended metric spaces:

if
$$x \in D_{s^*s} = \{y \in S \mid s^*sy = y\}$$
 then $(sx)^*(sx) = x^*x$
and hence $x \mathcal{L} sx$ (the converse also holds)

Remark: we need to consider extended metric spaces:

if
$$x \in D_{s^*s} = \{y \in S \mid s^*sy = y\}$$
 then $(sx)^*(sx) = x^*x$
and hence $x \mathcal{L} sx$ (the converse also holds)

Green's relations:

- $x \mathcal{L} y$ if $x^*x = y^*y$
- $x \mathcal{R} y \text{ if } xx^* = yy^*$
- $\mathcal{H} = \mathcal{L}$ and \mathcal{R}
- $\mathcal{D} = \mathcal{L} \circ \mathcal{R}$

Remark: we need to consider extended metric spaces:

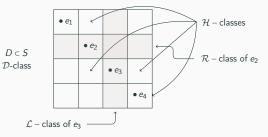
if
$$x \in D_{s^*s} = \{y \in S \mid s^*sy = y\}$$
 then $(sx)^*(sx) = x^*x$

 $D \subset S$

and hence $x \mathcal{L} sx$ (the converse also holds)

Green's relations:

- $x \mathcal{L} y$ if $x^*x = y^*y$
- $x \mathcal{R} y$ if $xx^* = yy^*$
- $\mathcal{H} = \mathcal{L}$ and \mathcal{R}
- $\mathcal{D} = \mathcal{L} \circ \mathcal{R}$



Remark: we need to consider extended metric spaces:

if
$$x \in D_{s^*s} = \{ y \in S \mid s^*sy = y \}$$
 then $(sx)^*(sx) = x^*x$

and hence $x \mathcal{L} sx$ (the converse also holds)

Green's relations:

- $x \mathcal{L} y$ if $x^*x = y^*y$
- $x \mathcal{R} y$ if $xx^* = yy^*$
- $\mathcal{H} = \mathcal{L}$ and \mathcal{R}
- $\mathcal{D} = \mathcal{L} \circ \mathcal{R}$.

$$\mathcal{L}$$
 – class of e_3 ———

Remark - need of extended metrics

Good distances $d: S \times S \rightarrow [0, \infty]$ satisfy that

$$x^*x = y^*y \Leftrightarrow d(x,y) < \infty$$

Definition (Schützenberger - 1959)

Let $S = \langle K \rangle$, where $K = K^*$. Given an \mathcal{L} -class $L \subset S$, let Λ_L be

- the graph whose vertices are the points of L and
- where $x, y \in L$ are joined by a k-labeled edge if kx = y.

Likewise, let $\Lambda_S = \sqcup_{e \in E(S)} \Lambda_{L_e}$.

Definition (Schützenberger - 1959)

Let $S = \langle K \rangle$, where $K = K^*$. Given an \mathcal{L} -class $L \subset S$, let Λ_L be

- the graph whose vertices are the points of L and
- where $x, y \in L$ are joined by a k-labeled edge if kx = y.

Likewise, let $\Lambda_S = \sqcup_{e \in E(S)} \Lambda_{L_e}$.

- Construct the (left)
- Cayley graph w.r.t. K
- Erase directed arrows

Definition (Schützenberger - 1959)

Let $S = \langle K \rangle$, where $K = K^*$. Given an \mathcal{L} -class $L \subset S$, let Λ_L be

- the graph whose vertices are the points of L and
- where $x, y \in L$ are joined by a k-labeled edge if kx = y.

Likewise, let
$$\Lambda_S = \sqcup_{e \in E(S)} \Lambda_{L_e}$$
.

Example:
$$\mathcal{B} := \langle a, a^* \mid a^*a = 1 \rangle$$

- Construct the (left)
- Cayley graph w.r.t. K
- Erase directed arrows

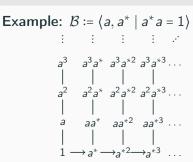
Definition (Schützenberger - 1959)

Let $S = \langle K \rangle$, where $K = K^*$. Given an \mathcal{L} -class $L \subset S$, let Λ_L be

- the graph whose vertices are the points of L and
- where $x, y \in L$ are joined by a k-labeled edge if kx = y.

Likewise, let $\Lambda_S = \sqcup_{e \in E(S)} \Lambda_{L_e}$.

- Construct the (left)
- Cayley graph w.r.t. K
- Erase directed arrows



Definition (Schützenberger - 1959)

Let $S = \langle K \rangle$, where $K = K^*$. Given an \mathcal{L} -class $L \subset S$, let Λ_L be

- the graph whose vertices are the points of L and
- where $x, y \in L$ are joined by a k-labeled edge if kx = y.

Likewise, let $\Lambda_S = \sqcup_{e \in E(S)} \Lambda_{L_e}$.

- Construct the (left)
 Cayley graph w.r.t. K
- Erase directed arrows

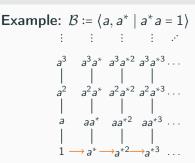
Definition (Schützenberger - 1959)

Let $S = \langle K \rangle$, where $K = K^*$. Given an \mathcal{L} -class $L \subset S$, let Λ_L be

- the graph whose vertices are the points of L and
- where $x, y \in L$ are joined by a k-labeled edge if kx = y.

Likewise, let $\Lambda_S = \sqcup_{e \in E(S)} \Lambda_{L_e}$.

- Construct the (left)
 Cayley graph w.r.t. K
- Erase directed arrows



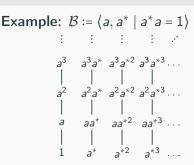
Definition (Schützenberger - 1959)

Let $S = \langle K \rangle$, where $K = K^*$. Given an \mathcal{L} -class $L \subset S$, let Λ_L be

- the graph whose vertices are the points of L and
- where $x, y \in L$ are joined by a k-labeled edge if kx = y.

Likewise, let $\Lambda_S = \sqcup_{e \in E(S)} \Lambda_{L_e}$.

- Construct the (left)
- Cayley graph w.r.t. K
- Erase directed arrows



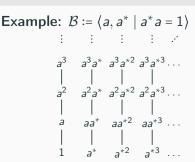
Definition (Schützenberger - 1959)

Let $S = \langle K \rangle$, where $K = K^*$. Given an \mathcal{L} -class $L \subset S$, let Λ_L be

- the graph whose vertices are the points of L and
- where $x, y \in L$ are joined by a k-labeled edge if kx = y.

Likewise, let $\Lambda_S = \sqcup_{e \in E(S)} \Lambda_{L_e}$.

- Construct the (left)
- Cayley graph w.r.t. K
- Erase directed arrows



Remark: not all graphs are group Cayley graphs. However:

```
Theorem (Stephen - 1990)
{connected graphs} = {Schützenberger graphs}
```

Remark: not all graphs are group Cayley graphs. However:

Theorem (Stephen - 1990)

 $\{connected\ graphs\} = \{Schützenberger\ graphs\}$

Lemma (right invariance)

Let
$$S = \langle K \rangle$$
. If $x \in D_{s^*s}$ then $d(x, sx) \le d(s^*s, s)$.

In particular, if $xx^* = s^*s$ then $d(x, sx) = d(s^*s, s)$.

$$L_{s^*s} \xrightarrow{k_1 \atop s^*s} \underbrace{k_2 \atop k_\ell \ldots k_1 s^*s} \xrightarrow{k_\ell \atop s = k_\ell \ldots k_1 s^*s}$$

Remark: not all graphs are group Cayley graphs. However:

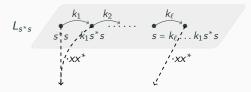
Theorem (Stephen - 1990)

 $\{connected graphs\} = \{Schützenberger graphs\}$

Lemma (right invariance)

Let
$$S = \langle K \rangle$$
. If $x \in D_{s^*s}$ then $d(x, sx) \le d(s^*s, s)$.

In particular, if $xx^* = s^*s$ then $d(x, sx) = d(s^*s, s)$.



Remark: not all graphs are group Cayley graphs. However:

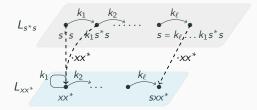
Theorem (Stephen - 1990)

 $\{connected\ graphs\} = \{Sch\"{u}tzenberger\ graphs\}$

Lemma (right invariance)

Let
$$S = \langle K \rangle$$
. If $x \in D_{s^*s}$ then $d(x, sx) \le d(s^*s, s)$.

In particular, if $xx^* = s^*s$ then $d(x, sx) = d(s^*s, s)$.



Remark: not all graphs are group Cayley graphs. However:

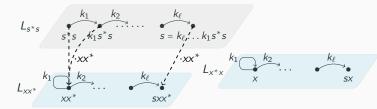
Theorem (Stephen - 1990)

 $\{connected graphs\} = \{Schützenberger graphs\}$

Lemma (right invariance)

Let $S = \langle K \rangle$. If $x \in D_{s^*s}$ then $d(x, sx) \le d(s^*s, s)$.

In particular, if $xx^* = s^*s$ then $d(x, sx) = d(s^*s, s)$.



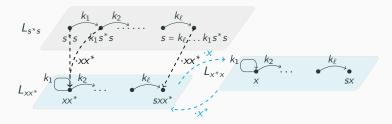
Remark: not all graphs are group Cayley graphs. However:

Theorem (Stephen - 1990)

{connected graphs} = {Schützenberger graphs}

Lemma (right invariance)

Let
$$S = \langle K \rangle$$
. If $x \in D_{s^*s}$ then $d(x, sx) \le d(s^*s, s)$.
In particular, if $xx^* = s^*s$ then $d(x, sx) = d(s^*s, s)$.



3. Day's amenability vs. nuclearity

Day's amenability as a coarse condition

Definition & Proposition (Day 1957 & Ara-Lledó-M. 2020)

S is $\underline{amenable}$ if there is $\mu:\mathcal{P}\left(S\right)\rightarrow\left[0,1\right]$ such that

(a)
$$\mu(A) = \mu(A \cap D_{s^*s})$$
 for every $s \in S$ and $A \subset S$

(b)
$$\mu(B) = \mu(sB)$$
 for every $s \in S$ and $B \subset D_{s^*s}$

Definition & Proposition (Day 1957 & Ara-Lledó-M. 2020)

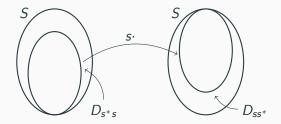
S is $\underline{amenable}$ if there is $\mu : \mathcal{P}\left(S\right) \rightarrow [0,1]$ such that

- (a) $\mu(A) = \mu(A \cap D_{s^*s})$ for every $s \in S$ and $A \subset S$
- (b) $\mu(B) = \mu(sB)$ for every $s \in S$ and $B \subset D_{s*s}$
- (a) is a normalization condition → boring
- (b) is a dynamical condition → relevant

Definition & Proposition (Day 1957 & Ara-Lledó-M. 2020)

S is <u>amenable</u> if there is μ : $\mathcal{P}\left(S\right) \rightarrow \left[0,1\right]$ such that

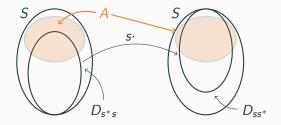
- (a) $\mu(A) = \mu(A \cap D_{s^*s})$ for every $s \in S$ and $A \subset S$
- (b) $\mu(B) = \mu(sB)$ for every $s \in S$ and $B \subset D_{s*s}$
- (a) is a normalization condition → boring
- (b) is a dynamical condition → relevant



Definition & Proposition (Day 1957 & Ara-Lledó-M. 2020)

S is <u>amenable</u> if there is μ : $\mathcal{P}\left(S\right) \rightarrow \left[0,1\right]$ such that

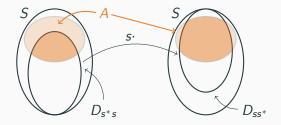
- (a) $\mu(A) = \mu(A \cap D_{s^*s})$ for every $s \in S$ and $A \subset S$
- (b) $\mu(B) = \mu(sB)$ for every $s \in S$ and $B \subset D_{s*s}$
- (a) is a normalization condition → boring
- (b) is a dynamical condition → relevant



Definition & Proposition (Day 1957 & Ara-Lledó-M. 2020)

S is <u>amenable</u> if there is $\mu: \mathcal{P}(S) \to [0,1]$ such that

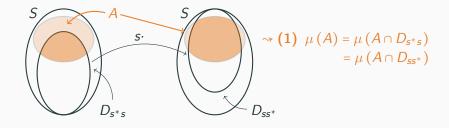
- (a) $\mu(A) = \mu(A \cap D_{s^*s})$ for every $s \in S$ and $A \subset S$
- (b) $\mu(B) = \mu(sB)$ for every $s \in S$ and $B \subset D_{s*s}$
- (a) is a normalization condition → boring
- (b) is a dynamical condition → relevant



Definition & Proposition (Day 1957 & Ara-Lledó-M. 2020)

S is <u>amenable</u> if there is $\mu: \mathcal{P}(S) \to [0,1]$ such that

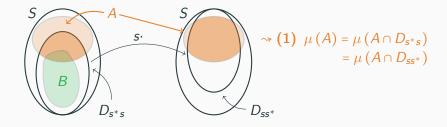
- (a) $\mu(A) = \mu(A \cap D_{s^*s})$ for every $s \in S$ and $A \subset S$
- (b) $\mu(B) = \mu(sB)$ for every $s \in S$ and $B \subset D_{s^*s}$
- (a) is a normalization condition → boring
- (b) is a dynamical condition → relevant



Definition & Proposition (Day 1957 & Ara-Lledó-M. 2020)

S is <u>amenable</u> if there is $\mu: \mathcal{P}(S) \to [0,1]$ such that

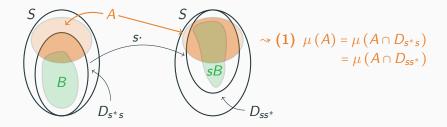
- (a) $\mu(A) = \mu(A \cap D_{s^*s})$ for every $s \in S$ and $A \subset S$
- (b) $\mu(B) = \mu(sB)$ for every $s \in S$ and $B \subset D_{s^*s}$
- (a) is a normalization condition → boring
- (b) is a dynamical condition → relevant



Definition & Proposition (Day 1957 & Ara-Lledó-M. 2020)

S is <u>amenable</u> if there is μ : $\mathcal{P}\left(S\right) \rightarrow \left[0,1\right]$ such that

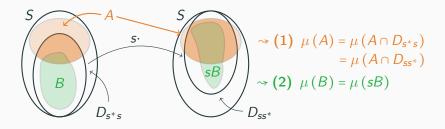
- (a) $\mu(A) = \mu(A \cap D_{s^*s})$ for every $s \in S$ and $A \subset S$
- (b) $\mu(B) = \mu(sB)$ for every $s \in S$ and $B \subset D_{s*s}$
- (a) is a normalization condition → boring
- (b) is a dynamical condition → relevant



Definition & Proposition (Day 1957 & Ara-Lledó-M. 2020)

S is $\underline{amenable}$ if there is $\mu:\mathcal{P}\left(S\right)\rightarrow\left[0,1\right]$ such that

- (a) $\mu(A) = \mu(A \cap D_{s^*s})$ for every $s \in S$ and $A \subset S$
- (b) $\mu(B) = \mu(sB)$ for every $s \in S$ and $B \subset D_{s^*s}$
- (a) is a normalization condition → boring
- (b) is a dynamical condition → relevant



Definition (Ara, Lledó, M. - 2020):

S is domain-measurable if it has a measure as in (b)

Definition (Ara, Lledó, M. - 2020):

S is domain-measurable if it has a measure as in (b)

Examples:

- For groups: domain-measurability
 ⇔ amenability
- $\mathbb{F}_2 \sqcup \{1\}$ is domain-measurable but non-amenable

Definition (Ara, Lledó, M. - 2020):

S is domain-measurable if it has a measure as in (b)

Examples:

- For groups: domain-measurability ⇔ amenability
- $\mathbb{F}_2 \sqcup \{1\}$ is domain-measurable but non-amenable

Theorem (Ara-Lledó-M. 2020)

S is domain-measurable \Leftrightarrow there is $e \in E$ and $F_n \subset L_e$ such that

$$\frac{\left|s\left(F_{n}\cap D_{s^{*}s}\right)\cup F_{n}\right|}{\left|F_{n}\right|}\xrightarrow{n\to\infty}1 \text{ for all } s\in S$$

Definition (Ara, Lledó, M. - 2020):

S is domain-measurable if it has a measure as in (b)

Examples:

- For groups: domain-measurability ⇔ amenability
- \bullet $\mathbb{F}_2 \sqcup \{1\}$ is domain-measurable but non-amenable

Theorem (Ara-Lledó-M. 2020)

S is domain-measurable \Leftrightarrow there is $e \in E$ and $F_n \subset L_e$ such that

$$\frac{|s(F_n \cap D_{s^*s}) \cup F_n|}{|F_n|} \xrightarrow{n \to \infty} 1 \text{ for all } s \in S$$

Consequence: domain-measurability ⇔

an $\mathcal{L}\text{-class}$ has subsets with small boundary, i.e., Følner sets

Day's amenability vs. traces

Theorem (Ara-Lledó-M. 2020)

Let S be a unital inverse semigroup. TFAE:

- (i) S is domain-measurable.
- (ii) $\mathcal{R}_S = C^* \left(\{ fv_s \}_{s \in S, f \in \ell^{\infty}(S)} \right)$ has an (amenable) trace. (iii) Λ_S is amenable (as a graph).

Day's amenability vs. traces

Theorem (Ara-Lledó-M. 2020)

Let S be a unital inverse semigroup. TFAE:

- (i) S is domain-measurable.
- (ii) $\mathcal{R}_S = C^* \left(\{ fv_s \}_{s \in S, f \in \ell^{\infty}(S)} \right)$ has an (amenable) trace.
- (iii) Λ_S is amenable (as a graph).

Proof: (i) ⇔ (iii) by the discussion before

For $\underline{\text{(i)}} \Rightarrow \underline{\text{(ii)}}$, given $\mu: \mathcal{P}(S) \rightarrow [0,1]$ the following is a trace

$$\tau_{\mu}: \mathcal{R}_{S} \to \ell^{\infty}(S) \xrightarrow{m_{\mu}} \mathbb{C},$$

$$a \mapsto \sum_{x \in S} \langle a\delta_{x}, \delta_{x} \rangle, \text{ and } m_{\mu}(p_{A}) = \mu(A).$$

Lastly, (ii) \Rightarrow (iii) involves a suitably adapted Namioka's trick...

Day's amenability vs. nuclearity

Remark: condition (a) can also be plugged above by saying:

- The trace τ_{μ} satisfies τ_{μ} (v_{e}) = 1 for every $e \in E$
- The Følner sets are in D_e for every $e \in E$

Among other options...

Day's amenability vs. nuclearity

Remark: condition (a) can also be plugged above by saying:

- The trace τ_{μ} satisfies τ_{μ} (v_e) = 1 for every $e \in E$
- The Følner sets are in D_e for every $e \in E$

Among other options...

WARNING: Day's amenability is <u>not</u> related with nuclearity! **Examples:**

- $\mathbb{F}_2 \sqcup \{0\}$ is Day's amenable but not nuclear
- An example of Nica is nuclear but not Day's amenable

4. Property A vs. exactness

Schützenberger graphs and property A

Definition (Yu - 1999)

(X,d) has <u>property A</u> if for every $r, \varepsilon > 0$ there is $\xi \colon X \to \ell^{\overline{1}}(X)_{1}^{+}$ and c > 0 such that supp $(\xi_{x}) \subset B_{c}(x)$ and $\|\xi_{x} - \xi_{y}\|_{1} \le \varepsilon$ for every $x, y \in X$ such that $d(x,y) \le r$

Schützenberger graphs and property A

Definition (Yu - 1999)

(X,d) has <u>property A</u> if for every $r, \varepsilon > 0$ there is $\xi \colon X \to \ell^{\overline{1}}(X)_1^+$ and c > 0 such that $\operatorname{supp}(\xi_X) \subset B_c(x)$ and $\|\xi_X - \xi_Y\|_1 \le \varepsilon$ for every $x, y \in X$ such that $d(x,y) \le r$

Remarks:

- Property A generalizes amenability for groups (not in general)
- Non-property A groups are hard to come by

Schützenberger graphs and property A

Definition (Yu - 1999)

(X,d) has <u>property A</u> if for every $r, \varepsilon > 0$ there is $\xi: X \to \ell^{\overline{1}}(X)_1^+$ and c > 0 such that supp $(\xi_x) \subset B_c(x)$ and $||\xi_x - \xi_y||_1 \le \varepsilon$ for every $x, y \in X$ such that $d(x, y) \le r$

Remarks:

- Property A generalizes amenability for groups (not in general)
- Non-property A groups are hard to come by

Theorem (Ozawa - 2000)

Let G be a countable group. The following are equivalent:

- (1) G has property A.
- (2) \mathcal{R}_G is nuclear.
- (3) $C_r^*(G)$ is exact.

Property A, nuclearity and exactness for inverse semigroups

Theorem (Lledó, M. - 2021)

Let $S = \langle K \rangle$ be an inverse semigroup. Some times, TFAE:

- (i) Λ_S has property A.
- (ii) \mathcal{R}_S is nuclear.
- (iii) $C_r^*(S)$ is exact.

Property A, nuclearity and exactness for inverse semigroups

Theorem (Lledó, M. - 2021)

Let $S = \langle K \rangle$ be an inverse semigroup. Some times, TFAE:

- (i) Λ_S has property A.
- (ii) \mathcal{R}_S is nuclear.
- (iii) $C_r^*(S)$ is exact.

Proof: (i)
$$\Rightarrow$$
 (ii) given $\xi: S \to \ell^1(S)_1^+$ the diagram
$$\mathcal{R}_S \to \prod_{x \in S} M_{B_c(x)} \subset \ell^\infty(S) \otimes M_q \to \mathcal{R}_S$$
$$a \mapsto \left(p_{B_c(x)} \ a \ p_{B_c(x)}\right)_{x \in S} \ \rightsquigarrow \ (b_x)_{x \in S} \mapsto \sum_{x \in S} \xi_x^* b_x \xi_x$$

can be shown to be an approximation of id: $\mathcal{R}_S \to \mathcal{R}_S$

(ii)
$$\Rightarrow$$
 (iii) is clear, while for (iii) \Rightarrow (i) maybe $\mathcal{R}_S \cong C_u^*(\Lambda_S)$

Property A, nuclearity and exactness for inverse semigroups

Theorem (Lledó, M. - 2021)

Let $S = \langle K \rangle$ be an inverse semigroup. Some times, TFAE:

- (i) Λ_S has property A.
- (ii) \mathcal{R}_S is nuclear.
- (iii) $C_r^*(S)$ is exact.

Proof: (i)
$$\Rightarrow$$
 (ii) given ξ : $S \to \ell^1(S)_1^+$ the diagram
$$\mathcal{R}_S \to \prod_{x \in S} M_{B_c(x)} \subset \ell^\infty(S) \otimes M_q \to \mathcal{R}_S$$
$$a \mapsto \left(p_{B_c(x)} \ a \ p_{B_c(x)}\right)_{x \in S} \ \rightsquigarrow \ (b_x)_{x \in S} \mapsto \sum_{x \in S} \xi_x^* b_x \xi_x$$

can be shown to be an approximation of id: $\mathcal{R}_S \to \mathcal{R}_S$

(ii)
$$\Rightarrow$$
 (iii) is clear, while for (iii) \Rightarrow (i) maybe $\mathcal{R}_S \cong C_u^*(\Lambda_S)$

Question: some times? When is that?

5. Having finitely complex local

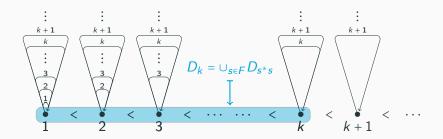
structures

Note: Λ_S = vertices + edges, and edges represent (x, sx)

```
Note: \Lambda_S = vertices + edges, and edges represent (x, sx) with x \in D_{s^*s}
```

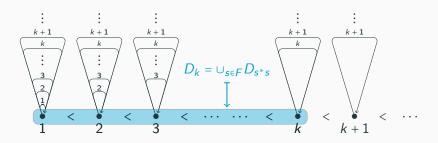
Note: Λ_S = vertices + edges, and edges represent (x, sx) with $x \in D_{s^*s}$

Problem: $S = (\mathbb{N}, \min) \rightsquigarrow n \cdot m := \min\{n, m\}$



Note: Λ_S = vertices + edges, and edges represent (x, sx)with $x \in D_{s^*s}$

Problem: $S = (\mathbb{N}, \min) \rightsquigarrow n \cdot m := \min\{n, m\}$



Key: for large $r \ge 0 \not\equiv F \in S$ labeling the paths in Λ_S of length r

Finite labeling II: a picture to *top* the explanation

Definition (Lledó, M. - 2021)

Let $S = \langle K \rangle$. We say (S, K) admits a <u>finite labeling</u> if for any $r \ge 0$ there is $F \in S$ such that if $d(s^*s, s) \le r$ then there is $m \in F$ such that $ms^*s = s$.

Finite labeling II: a picture to top the explanation

Definition (Lledó, M. - 2021)

Let $S = \langle K \rangle$. We say (S, K) admits a <u>finite labeling</u> if for any $r \ge 0$ there is $F \in S$ such that if $d(s^*s, s) \le r$ then there is $m \in F$ such that $ms^*s = s$.

Examples:

- (1) Finitely generated semigroups
- (2) Discrete groups → proper and right invariant metric

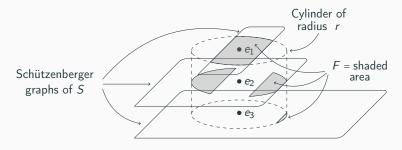
Finite labeling II: a picture to top the explanation

Definition (Lledó, M. - 2021)

Let $S = \langle K \rangle$. We say (S, K) admits a <u>finite labeling</u> if for any $r \ge 0$ there is $F \in S$ such that if $d(s^*s, s) \le r$ then there is $m \in F$ such that $ms^*s = s$.

Examples:

- (1) Finitely generated semigroups
- (2) Discrete groups → proper and right invariant metric



Theorem (Lledó, M. - 2021)

Suppose that (S, K) admits a finite labeling. Then:

$$\mathcal{R}_{S} \cong \ell^{\infty}(S) \rtimes_{r} S \cong C_{u}^{*}(\Lambda_{S})$$

for a certain canonical action $S \sim \ell^{\infty}(S)$.

Theorem (Lledó, M. - 2021)

Suppose that (S, K) admits a finite labeling. Then:

$$\mathcal{R}_S \cong \ell^{\infty}(S) \rtimes_r S \cong C_u^*(\Lambda_S)$$

for a certain canonical action $S \curvearrowright \ell^{\infty}(S)$.

Theorem (classical - for groups!)

For arbitrary groups: $\mathcal{R}_{G} \cong \ell^{\infty}(G) \rtimes_{r} G \cong C_{u}^{*}(G)$.

Theorem (Lledó, M. - 2021)

Suppose that (S, K) admits a finite labeling. Then:

$$\mathcal{R}_S \cong \ell^{\infty}\left(S\right) \rtimes_r S \cong C_u^*\left(\Lambda_S\right)$$

for a certain canonical action $S \sim \ell^{\infty}(S)$.

Theorem (classical - for groups!)

For arbitrary groups: $\mathcal{R}_{G} \cong \ell^{\infty}(G) \rtimes_{r} G \cong C_{u}^{*}(G)$.

Examples of **not** FL semigroups:
$$S = (\mathbb{N}, \min) \rightarrow$$

we have
$$\mathcal{R}_{S} = c_{0}$$
, while $\ell^{\infty}(S) \rtimes_{r} S = C_{u}^{*}(\Lambda_{S}) = \ell^{\infty}$

Theorem (Lledó, M. - 2021)

Suppose that (S, K) admits a finite labeling. Then:

$$\mathcal{R}_{S}\cong\ell^{\infty}\left(S\right)\rtimes_{r}S\cong C_{u}^{*}\left(\Lambda_{S}\right)$$

for a certain canonical action $S \sim \ell^{\infty}(S)$.

Theorem (classical - for groups!)

For arbitrary groups: $\mathcal{R}_{G} \cong \ell^{\infty}(G) \rtimes_{r} G \cong C_{u}^{*}(G)$.

Examples of <u>not</u> FL semigroups: $S = (\mathbb{N}, \min) \rightarrow \mathbb{R}$ we have $\mathcal{R}_S = c_0$, while $\ell^{\infty}(S) \rtimes_r S = C_0^*(\Lambda_S) = \ell^{\infty}$

Actually, even more is true:

Theorem (Lledó, M. - 2021)

$$\mathcal{R}_S \cong C_u^*(\Lambda_S) \Leftrightarrow (S, K) \text{ admits a FL.}$$

Finite labelings characterizing the uniform Roe algebra

Theorem (Lledó, M. - 2021)

$$\mathcal{R}_S \cong C_u^*(\Lambda_S) \Leftrightarrow (S, K)$$
 admits a FL.

Recall $C_u^*(\Lambda_S) = C^*(\{t \in \mathcal{B}(\ell^2(S)) \text{ of finite propagation }\})$

Proof:

- If t has finite propagation + (S, K) admits a FL then $\rightsquigarrow t = \sum_{s \in F} f_s v_s$, where $f_s \in \ell^{\infty}(S)$ i.e., we can label the pairs (x, y) with $\langle \delta_y, t \delta_x \rangle \neq 0$ as pairs (x, sx) with $s \in F \subseteq S$. Thus $\mathcal{R}_S \supset C_u^*(\Lambda_S)$
- If not FL \rightarrow construct t of propagation 1 with $t \notin \mathcal{R}_S$

Conclusions and future work

Conclusions:

- Inverse semigroups can be seen geometrically
 Coarse geometry ← C*-properties
- Admitting a finite labeling allows to approximate the behaviour
- Group amenability notions are no longer equivalent

Conclusions and future work

Conclusions:

- Admitting a finite labeling allows to approximate the behaviour
- Group amenability notions are no longer equivalent

Future work:

- Other C* or coarse properties?
- Quasi-diagonality? Nuclear dimension?

Conclusions and future work

Conclusions:

- Admitting a finite labeling allows to approximate the behaviour
- Group amenability notions are no longer equivalent

Future work:

- Other C* or coarse properties?
- Quasi-diagonality? Nuclear dimension?

Thank you for your attention!

Questions?