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o E={ecS|e’*=e}={s"s|seS} is commutative
e Dys=5*s-S is the domain of s
e 5: Dy — D+, where x — sx is a bijection

Induces the Wagner-Preston representation v:S — Z (S):
S S S)

Disty(sty* =
S (Dtt* n DS*S)

D(st)*(st) =t* (Dtt* n Ds*s)
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Open bisections and partial order

Remark: the Wagner-Preston representation encapsulates the idea
behind how we see these inverse semigroups:
Heuristic
Usual use of inverse semigroups: S c Bis(G)
Bis(G) :={uc G | open and r:u — r(u) homeomorphism}
s €S is a label for an open bunch of arrows in a groupoid

Partial order: s >t < there is some e € E with se = t,

< tis a restriction of s < st*t =t

Left regular representation: v:S — B(/?(S)), where

0sx ifxes*s-S
Vséx = .
0 otherwise

Reduced C*-algebra: C; (S) := C* ({vs}ss) € B(£2(S5))
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Group coarse geometry

Recall: Cayley graph construction ~ G = (gi!,..., gt!|relations):

e Graph ~ Cay (G,{g1,..-,8n}) :=(V,E),
e Vertices ~ V= G
e Edges ~ E := {(X,g,-*lx) | x € G and izl,...,n}.

(£2,£3)
(1)

!

Z =
Z
Proposition (classical)

The large scale geometry of the Cayley graph of G
does not depend on the generators

Goal: coarse geometry of inverse semigroups
and its relation with C*-properties of C; (S)
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Remark: we need to consider extended metric spaces:
S:=Gu{0}~s-0=0-5s=0=s"-0=0-s"
and, hence, there is a directed edge s =0 ~ d(s,0) = o
Definition (Chung, M. and Szakacs - 22)
Let d:S xS — [0,00]. We say d respects the components of S if
d(s,t)<oco < s*s=t*t

Remark:
e Automatic for groups
05's=0"0=0 = s=s5"s=50=0,
and therefore {0} c S forms a component!
e (5,d) =Ueee(Le, d|;,) are the connected components
e This allows for uncountable S

Standing assumption: d respects the components of S
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Proper and right sub-invariant metrics

Definition (Chung, M. and Szakacs - 22)
Let d:S xS — [0, 00] be a metric. We say d is:
e right sub-invariant if d(sr,tr) < d(s,t) for all s,t,reS
o if for all r >0 there is a finite F @ S such that
t € Fs for all s,t €S such that d(s,t) <r.

Remarks:
e Generalizes and right invariance for groups
For instance, if S = Uecg Ge, then (S, d) = Uece(Ge, dlg.)
e S=(s1,...,5k | relations) ~ d is the path metric in {Ac}ece
olf dis , then (S, d) has
However, the converse is falsel
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Existence and uniqueness of these metrics

Theorem (Chung, M. and Szakacs - 22)

Every countable inverse semigroup has a and
right sub-invariant metric. Moreover, such a metric is

unique up to bijective coarse equivalence.

Remark: works for some non-countable semigroups...
as long as S = (F U E), where F is countable

For instance: an action G ~ Cantor, where G is a discrete group,
induces S = Bis (G ~ Cantor) as above

Question: what sort of metric spaces (S, d) can we get?

Theorem (Chung, M. and Szakacs - 22)

Any (X, d) of is a component of
some inverse semigroup (that depends on X)
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(X, d) has property A if for every r,e > 0 there is
& X - 1 (X)] and c > 0 such that supp (£x) € B (x) and
|6 = &yll; < € for every x,y € X such that d (x,y) <r

Remarks:
e Property A generalizes amenability for groups (not in general)
e Non-property A groups are hard to come by

Theorem (Ozawa - 2000)
Let G be a countable group. TFAE:

(1) (G,d) has property A, where d is proper and r.inv.
(2) £ (G) %, G is nuclear.
(3) C;(G) is exact.
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Theorem (Lledé, M. - 2021, and Alcides, M. - 2022)
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Property A, nuclearity and exactness for inverse semigroups

Theorem (Lledé, M. - 2021, and Alcides, M. - 2022)

Let S be a countable inverse semigroup. TFAE:

(i) (S,d) has property A, where d is proper and r.inv.
(ii) £°(S) », S is nuclear.
(iii) CF(S) is exact.

Proof: (i) = (ii) given &S — 1 (S); the diagram

Rs — H MBC(X) c L% (5) ® Mq - Rs
xeS

2l (ch(x) = ch(X))xeS ~ (bX)XES = ngibxéx

can be shown to be an approximation of id: Rs -~ Rs
(ii) = (iii) is clear, while

(iii) = (i) is based on £>° (S) %, Sz C; (S,d) 10
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local AF algebras
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Recall: asdym(X,d) =0 is an analog for being a Cantor set
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Semigroups of asymptotic dimension 0

Recall: asdym(X,d) =0 is an analog for being a Cantor set

Definition

asdim (X, d) = 0 if for every r >0, X has a partition & such that
infusvayd (U, V) >r and supyg,diam(U) < oo

Question: when does S have asymptotic dimension 07
Answers:
e If S is finite then asdim(S) =0
o If Sis fin. gen., then S finite iff asdim(S) =0
o If we add generators S = ({t1,...,tp} U ) then
supjzlwmd(tfty,tj) <infiz1,. md(s'si,si),
and that doesn't increase the asymptotic dimension
e Hence, asdim(S) = 0 when S is locally finite

11



Local AF algebras and quasidiagonality |

Theorem (Chung, M. and Szakacs - 22)
Let S be an inverse semigroup. TFAE:

i) S is locally finite.
(i) asdlm(S d) =0, where d is proper and r.inv.
(iii) £%°(S) x, S is local AF.
(iv) £%°(S) %, S is strongly quasidiagonal.
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Local AF algebras and quasidiagonality |

Theorem (Chung, M. and Szakacs - 22)
Let S be an inverse semigroup. TFAE:

i) S is locally finite.

1)
(i) asdlm(S d) =0, where d is proper and r.inv.
(iii) £%°(S) x, S is local AF.

(iv) £%°(S) %, S is strongly quasidiagonal.

Remark: quasidiagonal = quasidiagonal
Theorem (Chung, M. and Szakacs - 22)
Let S be an inverse semigroup. TFAE:

i) S locally has finite components.
(i) (S,d) is sparse, where d is proper and r.inv.
(iii) £%°(S) %, S is quasidiagonal.
(iv) £°°(S) x, S is finite.

12
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Local AF algebras and quasidiagonality I

A bit about the proof:

S locally finite = asdym (S) = 0: sketched before

S locally finite <= asdym (S) = 0:

S sparse = (% (S) », S is quasidiagonal:
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Local finiteness vs. quasidiagonality

Sometimes these classes coincide, i.e.,
take G ~ X, where X is the Cantor set and G discrete group,
then: Bis (G ~ X) is locally finite <> Bis (G ~ X) is sparse.

Remark: these classes are, however, not the same!
e This division is impossible for groups, and
e already appeared in work of Li and Willett (2018)
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Local finiteness vs. quasidiagonality

Sometimes these classes coincide, i.e.,
take G ~ X, where X is the Cantor set and G discrete group,
then: Bis (G ~ X) is locally finite <> Bis (G ~ X) is sparse.

Remark: these classes are, however, not the same!
e This division is impossible for groups, and
e already appeared in work of Li and Willett (2018)

Locally finite: direct limits of finite semigroups, and hence

fin. generated + locally finite = finite

Sparse: only have finite components (not uniformly), and hence
there are infinite sparse inverse semigroups, e.g., S = (a)

Thank you for your attention! Questions?
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