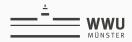
Exactness and geometric properties of inverse semigroups

Diego Martínez – WWU Münster March 17th, 2022

Non-commutativity in the North – Göteborgs Universitet

Based on joint work with Chyuan and Szakács



- (1) Inverse semigroups
- (2) Proper and right sub-invariant metrics
- (3) Exactness vs. Yu's property A
- (4) Asymptotic dimension 0 vs. local AF

1. Inverse semigroups

Definition

S is an *inverse semigroup* if for every $s \in S$ there is a unique $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$

Definition

S is an *inverse semigroup* if for every $s \in S$ there is a unique $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$

Remarks:

• Bicyclic monoid: $\mathcal{B} = \langle a, a^* \mid a^*a = 1 \rangle = \{a^i a^{*j} \mid i, j \ge 0\}$

Definition

S is an *inverse semigroup* if for every $s \in S$ there is a unique $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$

Remarks:

- Bicyclic monoid: $\mathcal{B} = \langle a, a^* \mid a^*a = 1 \rangle = \{a^i a^{*j} \mid i, j \ge 0\}$
- $E = \{e \in S \mid e^2 = e\} = \{s^*s \mid s \in S\}$ is commutative
- $D_{s^*s} = s^*s \cdot S$ is the <u>domain of s</u>
- $s: D_{s^*s} \to D_{ss^*}$, where $x \mapsto sx$ is a bijection

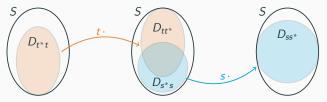
Definition

S is an *inverse semigroup* if for every $s \in S$ there is a unique $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$

Remarks:

- Bicyclic monoid: $\mathcal{B} = \langle a, a^* \mid a^*a = 1 \rangle = \{a^i a^{*j} \mid i, j \ge 0\}$
- $E = \{e \in S \mid e^2 = e\} = \{s^*s \mid s \in S\}$ is commutative
- $D_{s^*s} = s^*s \cdot S$ is the <u>domain of s</u>
- $s: D_{s^*s} \to D_{ss^*}$, where $x \mapsto sx$ is a bijection

Induces the *Wagner-Preston* representation $v: S \rightarrow \mathcal{I}(S)$:



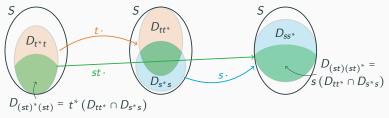
Definition

S is an *inverse semigroup* if for every $s \in S$ there is a unique $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$

Remarks:

- Bicyclic monoid: $\mathcal{B} = \langle a, a^* \mid a^*a = 1 \rangle = \{a^i a^{*j} \mid i, j \ge 0\}$
- $E = \{e \in S \mid e^2 = e\} = \{s^*s \mid s \in S\}$ is commutative
- $D_{s^*s} = s^*s \cdot S$ is the <u>domain of s</u>
- $s: D_{s^*s} \to D_{ss^*}$, where $x \mapsto sx$ is a bijection

Induces the *Wagner-Preston* representation $v: S \rightarrow \mathcal{I}(S)$:



Remark: the Wagner-Preston representation encapsulates the idea behind how we see these inverse semigroups:

Heuristic

Usual use of inverse semigroups: $S \subset Bis(G)$ Bis $(G) := \{u \subset G \mid open and r: u \rightarrow r(u) homeomorphism\}$

 $s \in S$ is a label for an open bunch of arrows in a groupoid

Remark: the Wagner-Preston representation encapsulates the idea behind how we see these inverse semigroups:

Heuristic

Usual use of inverse semigroups: $S \subset Bis(G)$

Bis $(G) := \{ u \subset G \mid \text{open and } r: u \to r(u) \text{ homeomorphism} \}$ s $\in S$ is a label for an open bunch of arrows in a groupoid

Partial order: $s \ge t \Leftrightarrow$ there is some $e \in E$ with se = t, $\Leftrightarrow t$ is a *restriction* of $s \Leftrightarrow st^*t = t$

Remark: the Wagner-Preston representation encapsulates the idea behind how we see these inverse semigroups:

Heuristic

Usual use of inverse semigroups: $S \subset Bis(G)$ Bis(G) := { $u \subset G$ | open and $r: u \rightarrow r(u)$ homeomorphism} $s \in S$ is a label for an open bunch of arrows in a groupoid

Partial order: $s \ge t \Leftrightarrow$ there is some $e \in E$ with se = t, $\Leftrightarrow t$ is a *restriction* of $s \Leftrightarrow st^*t = t$

Left regular representation: $v: S \to \mathcal{B}(\ell^2(S))$, where

$$v_{s}\delta_{x} = \begin{cases} \delta_{sx} & \text{if } x \in s^{*}s \cdot S \\ 0 & \text{otherwise} \end{cases}$$

Remark: the Wagner-Preston representation encapsulates the idea behind how we see these inverse semigroups:

Heuristic

Usual use of inverse semigroups: $S \subset Bis(G)$ Bis $(G) := \{u \subset G \mid open and r: u \to r(u) homeomorphism\}$ $s \in S$ is a label for an open bunch of arrows in a groupoid

Partial order: $s \ge t \Leftrightarrow$ there is some $e \in E$ with se = t, $\Leftrightarrow t$ is a *restriction* of $s \Leftrightarrow st^*t = t$

Left regular representation: $v: S \to \mathcal{B}(\ell^2(S))$, where

$$v_{s}\delta_{x} = \begin{cases} \delta_{sx} & \text{if } x \in s^{*}s \cdot S \\ 0 & \text{otherwise} \end{cases}$$
Reduced C*-algebra: $C_{r}^{*}(S) \coloneqq C^{*}(\{v_{s}\}_{s \in S}) \subset \mathcal{B}(\ell^{2}(S))$

Group coarse geometry

Recall: Cayley graph construction $\rightsquigarrow G = \langle g_1^{\pm 1}, \dots, g_n^{\pm 1} | \text{ relations } \rangle$:

- Graph \rightsquigarrow Cay $(G, \{g_1, \ldots, g_n\}) \coloneqq (V, E)$,
- Vertices $\rightsquigarrow V := G$
- Edges $\rightsquigarrow E := \{(x, g_i^{\pm 1}x) \mid x \in G \text{ and } i = 1, \dots, n\}.$

Group coarse geometry

Recall: Cayley graph construction $\rightsquigarrow G = \langle g_1^{\pm 1}, \dots, g_n^{\pm 1} | \text{ relations } \rangle$:

- Graph \rightsquigarrow Cay $(G, \{g_1, \ldots, g_n\}) \coloneqq (V, E)$,
- Vertices $\rightsquigarrow V := G$
- Edges $\rightsquigarrow E := \{(x, g_i^{\pm 1}x) \mid x \in G \text{ and } i = 1, \dots, n\}.$

Group coarse geometry

Recall: Cayley graph construction $\rightsquigarrow G = \langle g_1^{\pm 1}, \dots, g_n^{\pm 1} | \text{ relations } \rangle$:

- Graph \rightsquigarrow Cay $(G, \{g_1, \ldots, g_n\}) \coloneqq (V, E)$,
- Vertices $\rightsquigarrow V := G$
- Edges $\rightsquigarrow E := \{(x, g_i^{\pm 1}x) \mid x \in G \text{ and } i = 1, \dots, n\}.$

$$\cdots \quad \underbrace{ \mathbb{Z} = \langle \pm 2, \pm 3 \rangle}_{\cdots \qquad \cdots \qquad \mathbb{Z} = \langle \pm 1 \rangle$$

Proposition (classical)

The large scale geometry of the Cayley graph of G does <u>not</u> depend on the generators

Goal: coarse geometry of inverse semigroups and its relation with C*-properties of $C_r^*(S)$

2. Proper and right sub-invariant metrics

Remark: we need to consider *extended* metric spaces: $S := G \sqcup \{0\} \rightsquigarrow s \cdot 0 = 0 \cdot s = 0 = s^* \cdot 0 = 0 \cdot s^*$

and, hence, there is a **directed** edge $s \rightarrow 0 \quad \rightsquigarrow \quad d(s,0) = \infty$

Remark: we need to consider *extended* metric spaces: $S := G \sqcup \{0\} \rightsquigarrow s \cdot 0 = 0 \cdot s = 0 = s^* \cdot 0 = 0 \cdot s^*$ and, hence, there is a **directed** edge $s \rightarrow 0 \implies d(s,0) = \infty$ **Definition (Chung, M. and Szakács - 22)** Let $d: S \times S \rightarrow [0, \infty]$. We say *d* respects the components of *S* if $d(s, t) < \infty \iff s^*s = t^*t$

Remark: we need to consider *extended* metric spaces: $S := G \sqcup \{0\} \rightsquigarrow s \cdot 0 = 0 \cdot s = 0 = s^* \cdot 0 = 0 \cdot s^*$ and, hence, there is a **directed** edge $s \rightarrow 0 \implies d(s,0) = \infty$ **Definition (Chung, M. and Szakács - 22)** Let $d: S \times S \rightarrow [0, \infty]$. We say *d* respects the components of *S* if $d(s, t) < \infty \iff s^*s = t^*t$

Remark:

- Automatic for groups
- $s^*s = 0^*0 = 0 \implies s = ss^*s = s0 = 0$,

and therefore $\{0\} \subset S$ forms a component!

- $(S, d) = \sqcup_{e \in E} (L_e, d|_{L_e})$ are the connected components
- This allows for uncountable S

Remark: we need to consider *extended* metric spaces: $S := G \sqcup \{0\} \rightsquigarrow s \cdot 0 = 0 \cdot s = 0 = s^* \cdot 0 = 0 \cdot s^*$ and, hence, there is a **directed** edge $s \rightarrow 0 \implies d(s,0) = \infty$ **Definition (Chung, M. and Szakács - 22)** Let $d: S \times S \rightarrow [0, \infty]$. We say *d* respects the components of *S* if $d(s, t) < \infty \iff s^*s = t^*t$

Remark:

- Automatic for groups
- $s^*s = 0^*0 = 0 \implies s = ss^*s = s0 = 0$,

and therefore $\{0\} \subset S$ forms a component!

- $(S, d) = \sqcup_{e \in E} (L_e, d|_{L_e})$ are the connected components
- This allows for uncountable S

Standing assumption: d respects the components of S

Let $d: S \times S \rightarrow [0, \infty]$ be a metric. We say d is:

- right sub-invariant if $d(sr, tr) \le d(s, t)$ for all $s, t, r \in S$
- proper if for all $r \ge 0$ there is a finite $F \in S$ such that $t \in Fs$ for all $s, t \in S$ such that $d(s, t) \le r$.

Let $d: S \times S \rightarrow [0, \infty]$ be a metric. We say d is:

- right sub-invariant if $d(sr, tr) \le d(s, t)$ for all $s, t, r \in S$
- proper if for all $r \ge 0$ there is a finite $F \Subset S$ such that $t \in Fs$ for all $s, t \in S$ such that $d(s, t) \le r$.

Remarks:

• Generalizes properness and right invariance for groups

Let $d: S \times S \rightarrow [0, \infty]$ be a metric. We say d is:

- right sub-invariant if $d(sr, tr) \le d(s, t)$ for all $s, t, r \in S$
- proper if for all $r \ge 0$ there is a finite $F \Subset S$ such that $t \in Fs$ for all $s, t \in S$ such that $d(s, t) \le r$.

Remarks:

- Generalizes properness and right invariance for groups For instance, if $S = \bigsqcup_{e \in E} G_e$, then $(S, d) = \bigsqcup_{e \in E} (G_e, d|_{G_e})$
- $S = \langle s_1, \ldots, s_k \mid \text{relations} \rangle \rightsquigarrow d \text{ is the path metric in } \{\Lambda_e\}_{e \in E}$

Let $d: S \times S \rightarrow [0, \infty]$ be a metric. We say d is:

- right sub-invariant if $d(sr, tr) \le d(s, t)$ for all $s, t, r \in S$
- *proper* if for all $r \ge 0$ there is a finite $F \Subset S$ such that $t \in Fs$ for all $s, t \in S$ such that $d(s, t) \le r$.

Remarks:

- Generalizes properness and right invariance for groups
 For instance, if S = □_{e∈E}G_e, then (S, d) = □_{e∈E}(G_e, d|_{G_e})
- $S = \langle s_1, \ldots, s_k \mid \text{relations} \rangle \rightsquigarrow d \text{ is the path metric in } \{\Lambda_e\}_{e \in E}$
- If *d* is proper, then (*S*, *d*) has bounded geometry However, the converse is false!

Theorem (Chung, M. and Szakács - 22)

Every countable inverse semigroup has a proper and right sub-invariant metric. Moreover, such a metric is **unique** up to bijective coarse equivalence.

Theorem (Chung, M. and Szakács - 22)

Every countable inverse semigroup has a proper and right sub-invariant metric. Moreover, such a metric is **unique** up to bijective coarse equivalence.

Remark: works for some non-countable semigroups...

as long as $S = \langle F \cup E \rangle$, where F is countable

For instance: an action $G \curvearrowright$ Cantor, where G is a discrete group, induces $S = Bis(G \curvearrowright Cantor)$ as above

Theorem (Chung, M. and Szakács - 22)

Every countable inverse semigroup has a proper and right sub-invariant metric. Moreover, such a metric is **unique** up to bijective coarse equivalence.

Remark: works for some non-countable semigroups... as long as $S = \langle F \cup E \rangle$, where F is countable

For instance: an action $G \curvearrowright$ Cantor, where G is a discrete group, induces $S = Bis(G \curvearrowright Cantor)$ as above

Question: what sort of metric spaces (S, d) can we get?

Theorem (Chung, M. and Szakács - 22)

Every countable inverse semigroup has a proper and right sub-invariant metric. Moreover, such a metric is **unique** up to bijective coarse equivalence.

Remark: works for some non-countable semigroups... as long as $S = \langle F \cup E \rangle$, where F is countable

For instance: an action $G \curvearrowright$ Cantor, where G is a discrete group, induces $S = Bis(G \curvearrowright Cantor)$ as above

Question: what sort of metric spaces (S, d) can we get?

Theorem (Chung, M. and Szakács - 22)

Any (X, d) of bounded geometry is a component of some inverse semigroup (that depends on X)

3. Exactness vs. Yu's property A

Metric spaces and property A

Definition (Yu - 1999)

(X, d) has property A if for every $r, \varepsilon > 0$ there is $\xi: X \to \ell^{\overline{1}}(X)_{1}^{+}$ and c > 0 such that supp $(\xi_{x}) \subset B_{c}(x)$ and $||\xi_{x} - \xi_{y}||_{1} \le \varepsilon$ for every $x, y \in X$ such that $d(x, y) \le r$

Metric spaces and property A

Definition (Yu - 1999)

(X, d) has property A if for every $r, \varepsilon > 0$ there is $\xi: X \to \ell^{\overline{1}}(X)_{1}^{+}$ and c > 0 such that supp $(\xi_{x}) \subset B_{c}(x)$ and $||\xi_{x} - \xi_{y}||_{1} \le \varepsilon$ for every $x, y \in X$ such that $d(x, y) \le r$

Remarks:

- Property A generalizes amenability for groups (not in general)
- Non-property A groups are hard to come by

Metric spaces and property A

Definition (Yu - 1999)

(X, d) has property A if for every $r, \varepsilon > 0$ there is $\xi: X \to \ell^{\overline{1}}(X)_{1}^{+}$ and c > 0 such that supp $(\xi_{x}) \subset B_{c}(x)$ and $||\xi_{x} - \xi_{y}||_{1} \le \varepsilon$ for every $x, y \in X$ such that $d(x, y) \le r$

Remarks:

- Property A generalizes amenability for groups (not in general)
- Non-property A groups are hard to come by

```
Theorem (Ozawa - 2000)
```

Let G be a countable group. TFAE:

- (1) (G, d) has property A, where d is proper and r.inv.
- (2) $\ell^{\infty}(G) \rtimes_r G$ is nuclear.
- (3) $C_r^*(G)$ is exact.

Property A, nuclearity and exactness for inverse semigroups

Theorem (Lledó, M. - 2021, and Alcides, M. - 2022)

Let S be a countable inverse semigroup. TFAE:

(i) (S, d) has property A, where d is proper and r.inv.
(ii) ℓ[∞] (S) ⋊_r S is nuclear.
(iii) C^{*}_r (S) is exact.

Property A, nuclearity and exactness for inverse semigroups

Theorem (Lledó, M. - 2021, and Alcides, M. - 2022)

Let S be a countable inverse semigroup. TFAE:

(i) (S, d) has property A, where d is proper and r.inv.
(ii) ℓ[∞] (S) ⋊_r S is nuclear.
(iii) C^{*}_r (S) is exact.

Proof: (i) \Rightarrow (ii) given $\xi: S \to \ell^1(S)_1^+$ the diagram $\mathcal{R}_S \to \prod_{x \in S} M_{B_c(x)} \subset \ell^\infty(S) \otimes M_q \to \mathcal{R}_S$ $a \mapsto (p_{B_c(x)} a p_{B_c(x)})_{x \in S} \rightsquigarrow (b_x)_{x \in S} \mapsto \sum_{x \in S} \xi_x^* b_x \xi_x$

can be shown to be an approximation of $\mathsf{id} \colon \mathcal{R}_S \to \mathcal{R}_S$

$$\underbrace{\text{(ii)} \Rightarrow \text{(iii)}}_{\text{(iii)} \Rightarrow \text{(i)}} \text{ is based on } \ell^{\infty}(S) \rtimes_{r} S \cong C_{u}^{*}(S, d)$$

$$10$$

4. Asymptotic dimension 0 vs. local AF algebras

Semigroups of asymptotic dimension 0

Recall: asdym(X, d) = 0 is an analog for being a Cantor set

Definition

 $\begin{array}{l} \operatorname{asdim}\left(X,d\right)=0 \mbox{ if for every } r \geq 0, X \mbox{ has a partition } \mathcal{U} \mbox{ such that} \\ \inf_{U\neq V \in \mathcal{U}} d\left(U,V\right) \geq r \mbox{ and } \sup_{U\in \mathcal{U}} \operatorname{diam}\left(U\right) < \infty \end{array}$

Recall: asdym(X, d) = 0 is an analog for being a Cantor set

Definition

 $\begin{array}{l} \operatorname{asdim}\left(X,d\right)=0 \text{ if for every } r\geq 0,X \text{ has a partition } \mathcal{U} \text{ such that} \\ \operatorname{inf}_{U\neq V\in\mathcal{U}}d\left(U,V\right)\geq r \quad \text{and} \quad \sup_{U\in\mathcal{U}}\operatorname{diam}\left(U\right)<\infty \end{array}$

Question: when does S have asymptotic dimension 0?

Recall: asdym(X, d) = 0 is an analog for being a Cantor set

Definition

 $\begin{array}{l} \operatorname{asdim}\left(X,d\right)=0 \mbox{ if for every } r \geq 0, X \mbox{ has a partition } \mathcal{U} \mbox{ such that} \\ \inf_{U \neq V \in \mathcal{U}} d\left(U,V\right) \geq r \mbox{ and } \sup_{U \in \mathcal{U}} \operatorname{diam}\left(U\right) < \infty \end{array}$

Question: when does *S* have asymptotic dimension 0? **Answers:**

• If S is finite then $\operatorname{asdim}(S) = 0$

Recall: asdym(X, d) = 0 is an analog for being a Cantor set

Definition

 $\begin{array}{l} \operatorname{asdim}\left(X,d\right)=0 \text{ if for every } r\geq 0, X \text{ has a partition } \mathcal{U} \text{ such that} \\ \operatorname{inf}_{U\neq V\in \mathcal{U}} d\left(U,V\right)\geq r \quad \text{and} \quad \operatorname{sup}_{U\in \mathcal{U}} \operatorname{diam}\left(U\right)<\infty \end{array}$

Question: when does *S* have asymptotic dimension 0? **Answers:**

- If S is finite then $\operatorname{asdim}(S) = 0$
- If S is fin. gen., then S finite iff $\operatorname{asdim}(S) = 0$

Recall: asdym(X, d) = 0 is an analog for being a Cantor set

Definition

 $\begin{array}{l} \operatorname{asdim}\left(X,d\right)=0 \text{ if for every } r\geq 0, X \text{ has a partition } \mathcal{U} \text{ such that} \\ \operatorname{inf}_{U\neq V\in\mathcal{U}}d\left(U,V\right)\geq r \quad \text{and} \quad \operatorname{sup}_{U\in\mathcal{U}}\operatorname{diam}\left(U\right)<\infty \end{array}$

Question: when does *S* have asymptotic dimension 0? **Answers:**

- If S is finite then $\operatorname{asdim}(S) = 0$
- If S is fin. gen., then S finite iff $\operatorname{asdim}(S) = 0$
- If we add new generators $S = \langle \{t_1, \ldots, t_n\} \cup \{s_1, \ldots, s_m\} \rangle$ then $\sup_{j=1,\ldots,n} d(t_j^* t_j, t_j) < \inf_{i=1,\ldots,m} d(s_i^* s_i, s_i),$ and that doesn't increase the asymptotic dimension

Recall: asdym(X, d) = 0 is an analog for being a Cantor set

Definition

 $\begin{array}{l} \operatorname{asdim}\left(X,d\right)=0 \text{ if for every } r\geq 0, X \text{ has a partition } \mathcal{U} \text{ such that} \\ \operatorname{inf}_{U\neq V\in \mathcal{U}} d\left(U,V\right)\geq r \quad \text{and} \quad \operatorname{sup}_{U\in \mathcal{U}} \operatorname{diam}\left(U\right)<\infty \end{array}$

Question: when does *S* have asymptotic dimension 0? **Answers:**

- If S is finite then $\operatorname{asdim}(S) = 0$
- If S is fin. gen., then S finite iff $\operatorname{asdim}(S) = 0$
- If we add new generators $S = \langle \{t_1, \ldots, t_n\} \cup \{s_1, \ldots, s_m\} \rangle$ then $\sup_{j=1,\ldots,n} d(t_j^* t_j, t_j) < \inf_{i=1,\ldots,m} d(s_i^* s_i, s_i),$ and that doesn't increase the asymptotic dimension
- Hence, $\operatorname{asdim}(S) = 0$ when S is locally finite

Local AF algebras and quasidiagonality I

Theorem (Chung, M. and Szakács - 22)

Let S be an inverse semigroup. TFAE:

(i) *S* is locally finite. (ii) $\operatorname{asdim}(S, d) = 0$, where *d* is proper and r.inv. (iii) $\ell^{\infty}(S) \rtimes_r S$ is local AF. (iv) $\ell^{\infty}(S) \rtimes_r S$ is strongly quasidiagonal.

Local AF algebras and quasidiagonality I

```
Theorem (Chung, M. and Szakács - 22)
```

Let S be an inverse semigroup. TFAE:

(i) *S* is locally finite. (ii) $\operatorname{asdim}(S, d) = 0$, where *d* is proper and r.inv. (iii) $\ell^{\infty}(S) \rtimes_r S$ is local AF. (iv) $\ell^{\infty}(S) \rtimes_r S$ is strongly quasidiagonal.

Remark: strongly quasidiagonal \Rightarrow quasidiagonal

Local AF algebras and quasidiagonality I

```
Theorem (Chung, M. and Szakács - 22)
```

Let S be an inverse semigroup. TFAE:

(i) *S* is locally finite. (ii) $\operatorname{asdim}(S, d) = 0$, where *d* is proper and r.inv. (iii) $\ell^{\infty}(S) \rtimes_r S$ is local AF. (iv) $\ell^{\infty}(S) \rtimes_r S$ is strongly quasidiagonal.

Remark: strongly quasidiagonal \Rightarrow quasidiagonal

Theorem (Chung, M. and Szakács - 22)

Let S be an inverse semigroup. TFAE:

(i) S locally has finite components.
(ii) (S, d) is sparse, where d is proper and r.inv.
(iii) ℓ[∞] (S) ⋊_r S is quasidiagonal.
(iv) ℓ[∞] (S) ⋊_r S is finite.

A **bit** about the proof:

- A **bit** about the proof:
- S locally finite \Rightarrow asdym (S) = 0: sketched before

- A **bit** about the proof:
- S locally finite \Rightarrow asdym (S) = 0: sketched before
- S locally finite \Leftarrow asdym (S) = 0:

A **bit** about the proof:

S locally finite \Rightarrow asdym (S) = 0: sketched before

S locally finite \Leftarrow asdym (S) = 0:

S sparse $\Rightarrow \ell^{\infty}(S) \rtimes_{r} S$ is quasidiagonal:

Sometimes these classes coincide, i.e., take $G \curvearrowright X$, where X is the Cantor set and G discrete group, then: Bis $(G \curvearrowright X)$ is locally finite \Leftrightarrow Bis $(G \curvearrowright X)$ is sparse.

Remark: these classes are, however, not the same!

- This division is impossible for groups, and
- already appeared in work of Li and Willett (2018)

Sometimes these classes coincide, i.e.,

take $G \curvearrowright X$, where X is the Cantor set and G discrete group, then: Bis $(G \curvearrowright X)$ is locally finite \Leftrightarrow Bis $(G \curvearrowright X)$ is sparse.

Remark: these classes are, however, not the same!

- This division is impossible for groups, and
- already appeared in work of Li and Willett (2018)

Locally finite: direct limits of finite semigroups, and hence fin. generated + locally finite \Rightarrow finite

Sometimes these classes coincide, i.e.,

take $G \sim X$, where X is the Cantor set and G discrete group, then: Bis $(G \sim X)$ is locally finite \Leftrightarrow Bis $(G \sim X)$ is sparse.

Remark: these classes are, however, not the same!

- This division is impossible for groups, and
- already appeared in work of Li and Willett (2018)

Locally finite: direct limits of finite semigroups, and hence fin. generated + locally finite ⇒ finite

Sparse: only have finite components (**not** uniformly), and hence there are infinite sparse inverse semigroups, e.g., $S = \langle a \rangle$

Sometimes these classes coincide, i.e.,

take $G \sim X$, where X is the Cantor set and G discrete group, then: Bis $(G \sim X)$ is locally finite \Leftrightarrow Bis $(G \sim X)$ is sparse.

Remark: these classes are, however, not the same!

- This division is impossible for groups, and
- already appeared in work of Li and Willett (2018)

Locally finite: direct limits of finite semigroups, and hence fin. generated + locally finite ⇒ finite

Sparse: only have finite components (not uniformly), and hence there are infinite sparse inverse semigroups, e.g., $S = \langle a \rangle$

Thank you for your attention! Questions?