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Do Ponzi schemes exist?

e P asks A and B, these give P 1$; and so on; and on...
e Everybody gains money in a finite time by moving it around
e Needs infinitely many people in a certain form:
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Groups: von Neuman, Tarski and Fglner

Let G be a countable and discrete group:

e G is amenable if there is a prob. measure p: G - [0,1]
such that (g tA) = u(A) for all ge G and Ac G
e G satisfies the Fglner condition if for every ¢ >0 and K € G
there is F € G such that |[KF U F| < (1+¢)|F]|
e G is paradoxical if there are A;, Bj c G and a;, bj € G with
G =0l aiA; = Ul biB;j 5 (UL Aj) U ('—'jnl1Bj)
Theorem (von Neumann 1927, Tarski 1929, Fglner 1956)

G is amenable < G satisfies the Fglner condition

< G is not paradoxical

We call these equivalences classical

First goal: extend these to inverse semigroups
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Inverse semigroups and Wagner-Preston

Definition (Wagner 1952 and Preston 1954)

S is an inverse semigroup if for every s € S there is a unique s* € S

such that ss*s = s and s¥ss* = s*

Remarks:

Bicyclic monoid: B = (a,a* |a*a=1) = {a'a¥ | i,j >0}
E(S)={eeS|e*=e}={s*s|seS} is commutative
Ds+s:={x€S|x=5"sx} =s*s-S is the domain of s*s
s: Dg+s — Dss+, where x — sx is a bijection

Induces the Wagner-Preston representation v:S — Z (S):
S S S

D(st)(st)* =
S(Dtt* N DS*s)

D(st)*(st) = @ (Dtt* n Ds*s) 5
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Day's amenability

Key idea: multiplication is not injective
s* is only the inverse of s up to s*s ~ local inverse
s1A:={xeS|sxe A} = pre-image of A

Definition (Day - 1957, for general semigroups)

S is amenable if there is a prob. measure pu: P (S) — [0,1]
such that (s_lA) =1 (A) forevery se Sand Ac S

Examples: amenable groups, and

e 0eS~pu({0})=1.
e Fo {1} is not amenable.

Remarks:

e Day follows closely von Neumann's steps
e This definition is irksome, as it involves pre-images
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Pick S and p invariant measure (/L (A) = u(s_lA)). Then:

(1) p(B) =pu(BnDss)+ M(S_l (B~ Dss*)) = p (B Dss)
If Ac D+ then
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Day’s amenability framed in the inverse case

Pick S and p invariant measure (/L (A) = u(s_lA)). Then:

(1) p(B) =p (BN Dss)+ p1(s7H (B~ Dss+)) = 1 (B Dssr)
If Ac D+ then
B OA) = (sA) = (s*A) +u((57)7 (™A 5°A)
= p(s*A)
Theorem (Ara, Lledé, M. - 2020)

(4 is invariant < both following conditions are satisfied:

(1) Localization: 1 (B) = p(Bn Ds+s) forall seS,BcS.
for all A c Dgxs.
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Domain-measurable semigroups

Examples of domain-measurable semigroups:

e All amenable semigroups.
e Non-ame. & domain-measurable: S =F>u {1} and p = 6;.

Localization and domain-measurability explanation:

~ (1) p(B) = p(Bn Dsss)
= /[(B N DSS*)

~ (2) p(A) = p(sA)

Ds*s Dss*
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(1) S is domain-Fglner if there are F, € S such that
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Paradoxicality and Fglner’'s condition

Fglner & paradoxicality ~ from a domain point of view

Definition (Ara, Lledé, M. - 2020)

Let S be a (countable) inverse semigroup.

(1) S is domain-Fglner if there are F, € S such that
|s (Fn N Dsxs) U Fu|/|Fn| = 1 for every s e S
(2) Sis paradoxical if 3s;,t; €S, A c Ds:, and B; c Dtj*tj with
S=5A1U---Us,A,=t1B1u---UtyBm
SAiu---uA,uBI LU By,

Remarks: Note that if F n Ds+s =@ then |s(F n Dss) U F| = |F]



Classical equivalences renovated

Theorem (Ara, Lledé, M. - 2020)

Let S be an inverse semigroup. The following are equivalent:

(1) S is domain-measurable.
(2) S is not paradoxical.
(3) S is domain-Fglner.
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Classical equivalences renovated

Theorem (Ara, Lledé, M. - 2020)

Let S be an inverse semigroup. The following are equivalent:

(1) S is domain-measurable.
(2) S is not paradoxical.
(3) S is domain-Fglner.

(3) = (1): consider p (A) :=lim,y, |AN Fp|/|Fn|- If B c Dg+s then

|Bn Fal=|s(BnFy)| <[sBn Fal+]|s(Fan Dsxs) N Fal,
and hence, 1 (B) < pu(sB) (the other ineq. follows similarly)
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Classical equivalences renovated

Theorem (Ara, Lledé, M. - 2020)

Let S be an inverse semigroup. The following are equivalent:

(1) S is domain-measurable.
(2) S is not paradoxical.
(3) S is domain-Fglner.

(3) = (1): consider p (A) :=lim,y, |AN Fp|/|Fn|- If B c Dg+s then
B0 Fo =|s(BnFa)| < |sBnFa|+[s (Fan Dses) N Fal,
and hence, 1 (B) < pu(sB) (the other ineq. follows similarly)

(1) = (2): Par. decompostion + dom. measure ~ Cont. 2<1

(2) = (1): based on constructing a type semigroup Typ (S),
i.e., a commutative monoid that encapsulates when
w(A)=pu(B) for AABcS
10
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Theorem (Ara, Lled6, M. - 2020)

An inverse semigroup S is amenable iff there are F, € S such that
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Role of the localization

Recall: Day's amenable < localized +
Theorem (Ara, Lled6, M. - 2020)

An inverse semigroup S is amenable iff there are F, € S such that

eventually F, c Ds+s and

forallseS

Example: the bicyclic monoid B = (a,a* | a*a=1)

B =D

Daa*

a3 332 a3ax—2 3 *3 J

32 323 323*2 2 *3



Role of the localization

Recall: Day's amenable < localized +
Theorem (Ara, Lled6, M. - 2020)

An inverse semigroup S is amenable iff there are F, € S such that
eventually F, c Dsxs and forallse S

Example: the bicyclic monoid B = (a,a* | a*a=1)

11



2. Inverse semigroups and Day's
amenability

2.3. 2-norm approximations and amenable
traces



Left regular representation and the uniform Roe algebra

Goal: use the Fglner-type approx. to get approx. of Rs
~ approximate the traces of Rs and study them
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Left regular representation and the uniform Roe algebra

Goal: use the Fglner-type approx. to get approx. of Rs
~ approximate the traces of Rs and study them

The left regular representation of S is:

V:5->B (525)’ Vsdx = { 558 :tﬁeerva:es
Moreover £ (S) c B (825) as diagonal operators, and

Rs = C* ({fVs|fel™(S) andseS}) c B(£%S).
Theorem (classical - for groups!)

For arbitrary groups: Rg =0 (G) x, G = C; (G).

Proposition (Lledé, M. - 2021)
One can give S ~ £*° (S) such that Rs 2 ¢ (S) %, S.
12



2-norm approximations and amenable traces

Theorem (Ara, Lledé, M. - 2020)

The following (among others) are equivalent:

(1) S is domain-measurable. (2) S is not paradoxical.
(3) Rs has an amenable trace. (4) Rs is not properly infinite.
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2-norm approximations and amenable traces

Theorem (Ara, Lledé, M. - 2020)

The following (among others) are equivalent:

(1) S is domain-measurable. (2) S is not paradoxical.
(3) Rs has an amenable trace. (4) Rs is not properly infinite.
(1) = (3): the functional 7: B (£2S) 5 1= (§) 2 C, where

e m(pg) = 1 (B) and extended linearly
o E:B((2S) > 1> (S), where a > ¥, .s(x, ady)

is an amenable trace: 7 (Vs T) =7 (TV;) for every T € B(£2S)
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2-norm approximations and amenable traces

Theorem (Ara, Lledé, M. - 2020)

The following (among others) are equivalent:

(1) S is domain-measurable. (2) S is not paradoxical.
(3) Rs has an amenable trace. (4) Rs is not properly infinite.

(1) = (3): the functional 7: B (£2S) 5 1= (§) 2 C, where

e m(pg) = 1(B) and extended linearly

o E:B((2S) > 1> (S), where a > ¥, .s(x, ady)
is an amenable trace: 7 (Vs T) =7 (TV;) for every T € B(£2S)
Theorem (Ara, Lled6, M. - 2020)

There is a bijection between the domain-measures of S and the
traces of Rs. In particular, all the traces of Rs are amenable.

13



3. Coarse geometry of an inverse

semigroup



Crash course on coarse geometry

Coarse idea: study metric spaces globally instead of locally

Example (finite objects seen coarsely)

(X, d) is quasi-isometric to a point < sup, ,cx d (x,x") < co.
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Coarse idea: study metric spaces globally instead of locally

Example (finite objects seen coarsely)
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Proof:

X o
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Group coarse geometry

Recall: Cayley graph construction ~ G = (gi!,..., gt!|relations):

e Graph ~ Cay (G,{g1,..-,8n}) :=(V,E),
e Vertices ~ V= G
e Edges ~ E := {(X,gl-*lx) |xeGandi:1,...,n}.
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Group coarse geometry

Recall: Cayley graph construction ~ G = (gi!,..., gt!|relations):

e Graph ~ Cay (G,{g1,..-,8n}) :=(V,E),
e Vertices ~ V= G
e Edges ~ E := {(X,gl-*lx) |xeGandi:1,...,n}.

= (£2, +3)
(1)

%%

Z
Z
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Group coarse geometry

Recall: Cayley graph construction ~ G = (gi!,..., gt!|relations):

e Graph ~ Cay (G,{g1,..-,8n}) :=(V,E),
e Vertices ~ V= G
e Edges ~ E := {(X,g,-*lx) | x € G and izl,...,n}.

(£2,£3)
(1)

!

Z =
Z
Proposition (classical)

The large scale geometry of the Cayley graph of G
does not depend on the generators

Goal: reproduce these constructions for inverse semigroups

i.e., construct As undirected graph such that Rs = C; (As)
15



Infinite distances, and why they are necessary

Remark: we need to consider extended metric spaces
Proposition (Lledé, M. - 2021)
Let x,y €S, and d:S xS — [0, 0] be a distance.

(1) If d(x,y) < oo then My, € C; (S,d)
(2) If x*x#y*y then M, , ¢ Rs

Hence if x*x # y*y then d (x,y) = oo
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Infinite distances, and why they are necessary

Remark: we need to consider extended metric spaces
Proposition (Lledé, M. - 2021)
Let x,y €S, and d:S xS — [0, 0] be a distance.

(1) If d(x,y) < oo then My, € C; (S,d)
(2) If x*x#y*y then M, , ¢ Rs

Hence if x*x # y*y then d (x,y) = oo

Green’s relations: 4 H — classes
: Xﬁy i X*X:y*y DDCIS - R - class of e
° XR)/ If XX* = yy* RCass ee3
e H=Land R v
e D=LoR

L —class of e3 J

16



Schiitzenberger graphs |I: L-classes

Definition (Schiitzenberger - 1959)
Let S = (K), where K = K*. Given an L-class L c S, let A; be

e the graph whose vertices are the points of L and
e where x,y € L are joined by a k-labeled edge if kx = y.

Likewise, let As = Ueep(s)AL, -
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Schiitzenberger graphs |I: L-classes

Definition (Schiitzenberger - 1959)
Let S = (K), where K = K*. Given an L-class L c S, let A; be

e the graph whose vertices are the points of L and
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Schiitzenberger graphs Il: right invariance

Remark: not all graphs are Cayley graphs. However:
Theorem (Stephen - 1990)
{connected graphs} = {Schiitzenberger graphs}
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Schiitzenberger graphs Il: right invariance

Remark: not all graphs are Cayley graphs. However:
Theorem (Stephen - 1990)
{connected graphs} = {Schiitzenberger graphs}

Lemma (right invariance)
Let S = (K). If x € Dss then d (x,sx) < d(s*s,s).
In particular, if xx* =s*s then d (x,sx) =d (s*s,s).

Proof/conseq uence:
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3. Coarse geometry of an inverse

semigroup

3.1. Finite labelings and uniform Roe
algebras



Finite labeling I: Rs as a uniform Roe algebra

Proposition (Lledé, M. - 2021)
Let S=(K). Then Rs c C; (As).

Proof: generators of R have finite propagation.

19



Finite labeling I: Rs as a uniform Roe algebra

Proposition (Lledé, M. - 2021)
Let S=(K). Then Rs c C; (As).

Proof: generators of R have finite propagation.

Warning: Sometimes Rs ¢ C;; (As), e.g., S = (N, min) where
Rs =co(N) & £ (N) = G (As)

19



Finite labeling I: Rs as a uniform Roe algebra

Proposition (Lledé, M. - 2021)
Let S=(K). Then Rs c C; (As).
Proof: generators of R have finite propagation.

Warning: Sometimes Rs ¢ C;; (As), e.g., S = (N, min) where
Rs =co(N) & £ (N) = G (As)

Key: for large r >0 A F € S labeling the paths in Ag of length r

19



Finite labeling I: Rs as a uniform Roe algebra

Proposition (Lledé, M. - 2021)
Let S=(K). Then Rs c C; (As).

Proof: generators of R have finite propagation.

Warning: Sometimes Rs ¢ C;; (As), e.g., S = (N, min) where
Rs =co(N) & £ (N) = G (As)

Key: for large r >0 A F € S labeling the paths in Ag of length r

k+1 k+1 k+1 k+1 k+1
k

< < <
k k+1




Finite labeling I: Rs as a uniform Roe algebra

Proposition (Lledé, M. - 2021)
Let S=(K). Then Rs c C; (As).
Proof: generators of R have finite propagation.

Warning: Sometimes Rs ¢ C;; (As), e.g., S = (N, min) where
Rs =co(N) & £ (N) = G (As)

Key: for large r >0 A F € S labeling the paths in Ag of length r

k+1 k+1 k+1 k+1 k+1

< <
k k+1

19



Finite labeling Il: a picture to top the explanation

Definition (Lled6, M. - 2021)
Let S = (K). We say (S, K) admits a finite labeling if
for any r > 0 there is F € S such that if d (s*s,s) <r
then there is m € F such that ms*s = s.
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Definition (Lled6, M. - 2021)
Let S = (K). We say (S, K) admits a finite labeling if
for any r > 0 there is F € S such that if d (s*s,s) <r
then there is m € F such that ms*s = s.

Examples:
(1) Finitely generated semigroups
(2) F-inverse semigroups with As of bounded geometry
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Finite labeling Ill: importance

Theorem (Lledé, M. - 2021)
(S, K) admits a finite labeling < Rs =0 (S) %, S =C, (As).
Proof =: take T € C,; (As) such that

prop (T) =sup{d (x,y) | (d,, Tox) #0} =r< oo

Choose F @ S labeling all the r-paths in Ag ~ for all x,y €S
with d (x,y) < r there is t, , € F such that t, ,x = y. Then
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Finite labeling Ill: importance

Theorem (Lledé, M. - 2021)
(S, K) admits a finite labeling < Rs =0 (S) %, S =C, (As).

Proof =: take T € C,; (As) such that
prop (T) =sup{d (x,y) | (d,, Tox) #0} =r< oo

Choose F @ S labeling all the r-paths in Ag ~ for all x,y €S
with d (x,y) < r there is t, , € F such that t, ,x = y. Then
{ (6, Tosry) if

Rs3 Y &Ve=T, where& (y) =

F 0 otherwise

Remark: somehow, the Theorem says that if (S, K) is not FL
then maybe change your generating set K...
Theorem (classical - for groups!)

For arbitrary groups: Rg =¢* (G) %, G = C; (G). -



3. Coarse geometry of an inverse
semigroup

3.2. Domain-measurability as a coarse
invariant



Domain-measurability in the Schiitzenberger graphs

Fglner condition: s (F, N Ds+s) ~ only moving in L-classes.
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Domain-measurability in the Schiitzenberger graphs

Fglner condition: s (F, N Ds+s) ~ only moving in L-classes.
Therefore:
Domain-measurable < Schiitzenberger graphs have small growth:

Proposition (Lledé, M. - 2021)
Suppose S = (K) admits a FL. S is domain-measurable iff
for every r,e > 0 there is F € S such that [N F| < (1+¢)]|F|.

NF
Sol, M,/\/?F N
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Quasi-isometric invariance of domain-measurability

Theorem (Lledé, M. - 2021)
Let S and T be quasi-isometric and admitting finite labelings.
If T is domain-measurable then so is S.
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Theorem (Lledé, M. - 2021)
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If T is domain-measurable then so is S.

Proof:

NFs N*Fr
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Quasi-isometric invariance of domain-measurability

Theorem (Lledé, M. - 2021)
Let S and T be quasi-isometric and admitting finite labelings.
If T is domain-measurable then so is S.

Proof:

NFs N*Fr

Remark: amenability is not a g.i. invariant:

e S=Fu{0}and T =Fru {1}
o »:S— T, where ¢ (w)=w and ¢(0) =1is a q.i.
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3. Coarse geometry of an inverse

semigroup

3.3. Property A as a C*-property



Schiitzenberger graphs and property A

Definition (Yu - 1999)
(X, d) has property A if for every r,e > 0 there is
& X - 1 (X)] and c > 0 such that supp (£x) € B (x) and
1€ = &yl; < € for every x,y € X such that d (x,y) <r.
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Remarks:

e Property A generalizes amenability for groups (not in general)
e Non-property A groups are hard to come by

24



Schiitzenberger graphs and property A

Definition (Yu - 1999)
(X, d) has property A if for every r,e > 0 there is
& X - 1 (X)] and c > 0 such that supp (£x) € B (x) and
1€ = &yl; < € for every x,y € X such that d (x,y) <r.

Remarks:
e Property A generalizes amenability for groups (not in general)
e Non-property A groups are hard to come by

Theorem (Ozawa - 2000)
Let G be a countable group. The following are equivalent:

(1) G has property A.

2) R¢ is a nuclear C*-algebra.
(2) g

(3) C/(G) is an exact C*-algebra.
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Property A, nuclearity and exactness for inverse semigroups

Theorem (Lledé, M. - 2021)

Let S = (K). Consider:

(1) As has property A (as a graph).
(2) Rs is a nuclear C*-algebra.

(3) G (S) is an exact C*-algebra.

Then (1) = (2) = (3), and (3) = (1) when (S, K) admits a FL.
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Theorem (Lledé, M. - 2021)
Let S = (K). Consider:

(1) As has property A (as a graph).

(2) Rs is a nuclear C*-algebra.

(3) G (S) is an exact C*-algebra.

Then (1) = (2) = (3), and (3) = (1) when (S, K) admits a FL.
Proof:

e Usual arguments for (1) = (2) = (3)
e Nuclearity = exactness for Rs = C (As) [Sako 2021]
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Property A, nuclearity and exactness for inverse semigroups

Theorem (Lledé, M. - 2021)
Let S = (K). Consider:

(1) As has property A (as a graph).

(2) Rs is a nuclear C*-algebra.

(3) G (S) is an exact C*-algebra.

Then (1) = (2) = (3), and (3) = (1) when (S, K) admits a FL.
Proof:

e Usual arguments for (1) = (2) = (3)
e Nuclearity = exactness for Rs = C (As) [Sako 2021]

Remark: (1) = (2) ~ nuclearity does not pass to sub-algebras!
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4. The universal groupoid and its
amenability




Paterson’s universal groupoid and its amenability

Theorem (Paterson - 1999)

Given S there is Gy (S) = {filters of E (S)} %y S such that
G (S) =G (Gu(S)) and C*(S) = C* (G (5))
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Recall: for arbitrary (discrete) groups:
G is amenable < C; (G) is nuclear < C; (G) = C* (G)
And this has become a driving force of groupoid amenability:
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Paterson’s universal groupoid and its amenability

Theorem (Paterson - 1999)

Given S there is Gy (S) = {filters of E (S)} %y S such that
G (S) =G (Gu(S)) and C*(S) = C* (G (5))

Recall: for arbitrary (discrete) groups:
G is amenable < C; (G) is nuclear < C; (G) = C* (G)
And this has become a driving force of groupoid amenability:

Theorem (Anantharaman-Delaroche and Renault)
An (étale) groupoid G is amenable < C; (G) is nuclear.
Question:

e Relation between Gy (S) amenable and S amenable?
e How does Gy (S) enter the picture?

26



Groupoid amenability vs domain-measurability

Question: relation between Gy (S) amenable and S amenable?
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Groupoid amenability vs domain-measurability

Question: relation between Gy (S) amenable and S amenable?

Short answer: no relation, as

(1) S amenable/domain-measurable ~ traces in Rs
(2) Gy (S) amenable ~ nuclearity of C; (S) ~ nuclearity of Rs

Examples:

(i) Fou{0} is amenable but non-nuclear reduced C*-algebra

(Can also be done with a box space with a prop. (T) group)
(i) G (F2u{0}) # C* (F2u{0})
(iii) Nica gave a non-amenable semigroup with nuclear C*-algebra

27



Groupoid amenability and property A

However, property A of Ag ~ exactness of C; (S):

Proposition (Lledé, M. - 2021)
Let S = (K) with (S, K) admitting a finite labeling.
If Gy (S) is amenable then As has property A.
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Groupoid amenability and property A

However, property A of Ag ~ exactness of C; (S):

Proposition (Lledé, M. - 2021)
Let S = (K) with (S, K) admitting a finite labeling.
If Gy (S) is amenable then As has property A.

Proof: Gy (S) amenable < C (S) = C; (G (S)) nuclear

= C; (S) exact < Ag has prop. A
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Groupoid amenability and property A

However, property A of Ag ~ exactness of C; (S):
Proposition (Lledé, M. - 2021)
Let S = (K) with (S, K) admitting a finite labeling.
If Gy (S) is amenable then As has property A.
Proof: Gy (S) amenable < C (S) = C; (G (S)) nuclear
= C; (S) exact < Ag has prop. A

Remarks:

e Alternate argument via the definitions involved ~ not C*
e Is not an equivalence, as [F» has prop. A and is not amenable
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5. Norm approximations and
quasi-diagonality




From QD to domain-measurability

Definition/Theorem (Voiculescu, based on Halmos)
A C*-algebra A is quasi-diagonal if there are u.c.p. maps
©nA = My (p such that for all a,be A

llen (ab) =@ (2) @n ()| >0 and lp, (a)]| - |4l
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From QD to domain-measurability

Definition/Theorem (Voiculescu, based on Halmos)
A C*-algebra A is quasi-diagonal if there are u.c.p. maps
©nA = My (p such that for all a,be A

lon (ab) = ¢n(a) pn (B)[| >0 and |lpn (a)l| - [lall
Theorem (Ara, Lledé, M. - 2020)
If C;(S) is quasi-diagonal then S is domain-measurable.
The reverse implication is false.
Sketch of proof:

As ||-|l2< |- || ~ QD is stronger than the previous 2-approx.
~ dom. measurable = amenable trace = 2-norm approx.

(Any wk-* cluster point of {trk(n) o gp,,}neN gives a dom. measure)
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From QD to domain-measurability

Definition/Theorem (Voiculescu, based on Halmos)
A C*-algebra A is quasi-diagonal if there are u.c.p. maps
©nA = My (p such that for all a,be A

llon (ab) = i (a) on (b)[| >0 and ||, (a)]| = |lall
Theorem (Ara, Lledé, M. - 2020)

If C;(S) is quasi-diagonal then S is domain-measurable.
The reverse implication is false.
Sketch of proof:

As ||-|l2< |- || ~ QD is stronger than the previous 2-approx.
~ dom. measurable = amenable trace = 2-norm approx.

(Any wk-* cluster point of {trk(n) o gp,,}neN gives a dom. measure)

Lastly, B =(a,a* | a*a=1) is amenable but V,,+ ~ 1 in C} (B) o



Groupoid-TWW approach to going back

Goal: use algebraic properties of S ~ prove quasi-diagonality.
There currently are two strategies:
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Goal: use algebraic properties of S ~ prove quasi-diagonality.
There currently are two strategies:

(TWW) Nuclearity + UCT + faithful trace = C; (S) is QD
(Alt) Exploit the inner structure of S
Unfortunately, (TWW) does not quite work in this context:
Proposition (M. - 2021)
Suppose Gy (S) is minimal and C; (S) stably finite.
If S is not a group then S is isomorphic to E x H x E L {0},
where E := E(S) ~ {0} and H is a group.
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Groupoid-TWW approach to going back

Goal: use algebraic properties of S ~ prove quasi-diagonality.
There currently are two strategies:

(TWW) Nuclearity + UCT + faithful trace = C; (S) is QD
(Alt) Exploit the inner structure of S

Unfortunately, (TWW) does not quite work in this context:
Proposition (M. - 2021)
Suppose Gy (S) is minimal and C; (S) stably finite.
If S is not a group then S is isomorphic to E x H x E L {0},
where E := E(S) \ {0} and H is a group.

Remarks:
e Minimality is needed to guarantee faithfulness of the trace.

e Stable finiteness follows from quasi-diagonality.
30



Using D-classes to prove quasi-diagonality

Theorem (M. - 2021)
Suppose that:

(1) No D-class in S has infinitely many projections

(2) All the subgroups of S are amenable

Then C; (S) is quasi-diagonal.
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Using D-classes to prove quasi-diagonality

Theorem (M. - 2021)
Suppose that:

(1) No D-class in S has infinitely many projections

(2) All the subgroups of S are amenable

Then C; (S) is quasi-diagonal.

Very sketchy sketch of proof:

H — classes are

L[] el
amenable groups

oe
DcS ?

D-class / e

R — class of &

oey 4D = e ree(S)nD Wre VP Vi W,
= moved copies of py
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6. Summary and future work




Day’s amenability:

e Split into + localization ~ forward dynamics.
° ~ adequate Fglner and paradoxicality.
e These measures characterize the (amenable) traces of Rs.
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Schiitzenberger graphs:

e Equipped S with a proper and right invariant metric
~ distinguishes L-classes, but does not implement >
e Viewed R as a crossed product and C;;(As)

~ modulo finite labelings (automatic for groups)
e Studied Fglner sets geometrically, and prop. A in Rs.
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Day’s amenability:

e Split into dom.-measurable + localization ~ forward dynamics.
e Dom.-measurable ~ adequate Fglner and paradoxicality.
e These measures characterize the (amenable) traces of Rs.

Schiitzenberger graphs:

e Equipped S with a proper and right invariant metric
~ distinguishes L-classes, but does not implement >
e Viewed R as a crossed product and C;;(As)

~ modulo finite labelings (automatic for groups)
e Studied Fglner sets geometrically, and prop. A in Rs.

Groupoids, quasi-diagonality and related notions:

e Related this study with groupoid amenability

e Upgraded 2-norm approx. ~ norm-approx. (in some cases) i



About metrics and property A:

e Unique proper and right invariant metric?

Role of the finite labelings? Do these appear?
e Semigroups without property A ~ natural examples?
e Reproduce non-A metric spaces with semigroups.
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About metrics and property A:

e Unique proper and right invariant metric?

Role of the finite labelings? Do these appear?
e Semigroups without property A ~ natural examples?
e Reproduce non-A metric spaces with semigroups.

Quasi-diagonality and norm approximations:

o Characterize quasi-diagonality of C;(S) in terms of S.
Role of the UCT? Traces? Nuclearity (or exactness)?

e Exploit decomposition into D-classes and H-classes.

e For groups, compute explicit quasi-diagonal approximation.

Interesting C*-algebras and their semigroup counterparts:
e Study the coarse geometry of AF-monoids. Classifiable ones?

e Inverse semigroup equivalent of Z. .
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Semigroups and Day’s amenability

S semigroup ~ binary and associative operation (s, t) — st

Key idea: multiplication is not injective... maybe 7 inverse s71

sTA={xeS|sxcAl~sstAgAgsisA
Definition (Day 1957)

S is amenable if there is a prob. measure pu: P (S) — [0,1]
such that (s_lA) = (A) forevery seSand Ac S

Examples:
e All amenable groups.
e 0eS~pu({0})=1.
e Fou {1} is not amenable.
e S:={a b} where ab=aa=a and ba= bb = b is not amenable.

Questions: Fglner condition? Paradoxical characterization? 35



Classical equivalences in semigroups

Note we have a choice to make:

|sF N F|<e
sF

Fl

|F \ sF|<elF]|

e In general |sF| < |F|
e |sF N F| <|F \ sF|, and equality when |sF| = |F]|
e Warning: |sF| small, and sF N F = @ = |sF \ F| small

(1) S satisfies the Fglner condition if for every e >0 and K€ S
there is F € S such that [sF ~ F| <= |F| for every s e K

(2) S satisfies the strong Fglner condition if for every € > 0 and
K @ S there is F € S such that |F ~ sF| < e|F| for every s € K
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Amenable, Fglner and algebraic amenability

Theorem (many hands)

Let S be a semigroup. Consider:

(1) S has a strong Fglner sequence
(2) S is amenable

(3) S has a Fglner sequence

(4) CS is algebraically amenable

Then (1) = (2) = (3) = (4)

Proof: (1) = (2): u(A) =limy, |[An Fpl/|Fal
(2) = (3): Namioka 1964, based on Fglner 1957

(3) = (4): {Fn}pen is a Falner sequence then

dim (sCFyp +CFn) _ dim(C(sFaUFn)) _[sFaUFyl now
dim(CF,) ~  dim(CF,)  |F|

37



Reversing the classical equivalences

Remark: none of the reverse implications hold.

(2) # (1): Klawe 1977 ~ right cancellative amenable semigroup
not strong Fglner nor left cancellative

(3) # (2): as S={a, b} is:
e Finite ~ F := S is a nice Fglner set
e Not amenable: p({a}) = u(b™*{a}) =0=p(at{b}) = u({b})

(4) = (3): a bit more involved...
Example (Ara, Lledd, M. - 2020)
Consider F% = (a, b) c F5, and

n-1 ifn>1

a:FgﬁEnd(N),Oéa(n):ab(”):{ 0 ifn=0

Then N x,, F is algebraically amenable but not Fglner. -



An argument for and against injectivity

All of the above differences boil down to |F| # |sF|

Definition: S is (left) cancellative if sx = sy then x =y

Nice behavior with cancellation:

e A=s1sA
e |F|=|sF|, and hence
e Strong Fglner << amenable < Fglner

Naughty behavior with cancellation:

o ss1AGA
e Not a clear candidate for paradoxicality, as
AteS such that t71s71A= A~ S lacks the inverse of s

Solution: having sets D j c S such that s: Ds 1 — Ds 5 is bijective,
and do everything up to these domains
39



Inverse semigroups and Wagner-Preston

Recall that the Wagner-Preston representation v:S - Z (S) is

o Dos:={xeS|x=s"sx} =s*s-S is the domain of s*s
e 5:Dgxs > Dgg+, where x — sx

S S S)

Disty(sty* =
S (Dtt* n DS*S)

D(st)*(st) =t* (Dtt* n Ds*s)

This idea can be taken a bit further:
Definition (Sieben - 1997)
A representation of S on the discrete set X is a

homomorphism a: S — Z(X), where s = (as: Dg+s = Dsg+) .
4



Representations - and one example to contain them all

Recall: Z(X) = {(t,A,B) | A,Bc X and t: A~ Biis a bijection}

e In particular Z (N) contains every countable inverse semigroup

bijections _ partial bijections
groups ~ inv. semigroups

e Idempotents e € E (S) ~ subsets of X

Remark: recall that if S = G is a group then

{actions a: G - Perm (X)} < {congruences in G}

< {normal subgroups N c G}

However, a: S — Z (X)) induces only a congruence on S

Warning: no clear notion of normal sub-semigroup
~» no obvious description of {congruences on S}

41



The type semigroup

Given a: S — Z (X) consider the commutative monoid

Typ («) := ([A] where A c X) subject to

() [#]=0

(i) [A] =[as (A)] whenever A c Dgx
(i) [AuB] =[A]+[B]ifAnB=g
Lastly, a, 8 € Typ («) then o < B if ac+~y = 3 for some v € Typ («)
Lemma (Ara, Lledd, M. - 2020)

Let Typ («) be as above, and let [A],[B] € Typ («). Then

(1) If [A] <[B] and [B] < [A] then [A] = [B]
(2) If n-[A]=n-[B] for any ne N then [A] = [B]
(3) If (n+1)-[A] <n-[A] for some neN then [A] =2-[A]

42



Classical equivalences renovated |

Theorem (Ara, Lledé, M. - 2020)
Let «:S - Z (X) be an inverse semigroup. TFAE:

(1) X is domain-measurable.
(2) X is not paradoxical.
(3) X is domain-Fglner.

(1) = (3): follow the algorithm:

e m(pg):=p(B) + extend by lineary and continuity
e me (¢~ (X))" is a normalized functional
o Recall: {normal states} c (£*° (X)) are dense (weak-*)

Approximating m by normal states, and applying Namioka's trick
~ hy et (X)] suchthat |[s*hy—s*shyll; >0
Some inner level set of hy is a good enough Fglner set.
43



Classical equivalences renovated Il

(1) = (2): if it was paradoxical then
2= %L u(siA) + I u(tBj) = Ty w(A) + 27 1 (B))
=p(Au---uA,uBiU---UBy) <p(X)=1
(2) = (1): note 2-[X] £ [X] in Typ(«), and by the Lemma
(n+1)-[X]£n-[X]forany neN
Theorem (Tarski - 1929)

Let (7,+) be a commutative monoid, with neutral element and
€ € T. The following are equivalent:

(a) (n+1)-eg¢n-eforany neN
(b) There is a homo. v: T — [0, 00] with v (e) =1

Hence there is a homomorphism v: Typ () — [0, co] with

v([X])=1. Then u(B):=v([B]) is a domain-measure.



The localization condition localized in time

The localization already appeared in previous work:

Theorem (Gray, Kambites - 2017)
Let S be a semigroup satisfying the Klawe condition. Then

S is amenable < there are F,, ¢ S such that
and [sF,| = |F,|

F, can be found where s acts injectively ~ Dgx

Indeed: if «=v:S —7Z(S), and S is amenable when F, is
eventually within Dgxs ~ F, € Dgxs = |Fp| = |sFy|

45



Wagner-Preston case, or when X = S

Before: what happens when X =S and a=v:5S—>Z(S5)?

Consider the action of S given by:

o Ess={f el (S)|supp(f)c Ds:s}
e For any f € Es«s consider (sf) (x) :=f (s*x) when x € Dgg+

And construct (> (S) x, S c B(£?S ® (%5)

Proposition (Ara, Lled6, M. - 2020)

With the above notation: Rs = (> (S) %, S

Proof: check that U (¢*° (S) %, S)U" 21® Rs = Rs, where

Ix ®dyx if xx* =y”y

U:PS ® (2SS - S ® (°S, 5, ® 0, + :
0 otherwise
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All the traces of Rs are amenable

Theorem (Ara, Lledé, M. - 2020)
There is a bijection between the domain-measures on X and the
traces of Rx. In particular, all the traces of Rx are amenable.

Proof: the map y+ 7: B ((2X) g (X) 3 C is a bijection:
— T is a trace (see above Theorem)
— The map is bijective since:

Lemma (Ara, Lledé, M. - 2020)

All traces of Rs factor under £, and hence m =€ o7 is a mean.

Key point: if sx # x for all x € Ac Ds+s it can be 3-colored, i.e.,
A= B uB,uBs where sB;n B; = @. Hence for every trace ¢
@ (Vspa) = ¢ (Vsp )+SO(VSP82) +90(V5PB3)

= (p, Vsps,) + ¢ (P, VspB,) + ¥ (PB; Vsps;) = 0
47



Property A and nuclearity of Rs

Theorem (Lledd, M. - 2021)
If As has property A (as a graph) then R is nuclear.

Note: this is based on a similar result for £-classes:
Proof: given a &: X — (1 (X)] and ¢ > 0 consider

@ Rs = [ Ma.(x) € £ (S) ® My, where a~ (pg.(x) aPB.(x)), s

xeS

and

P:l= (S) ® M - Rs, where (byx),.s+ Z &2 e
xeS

with &0, =&, (x) 0, gives a c.p.c. approximation of Rs:

e Both ¢ and v are completely positive
o [IfVs = (o (V) < lIfVSll - supyep,. 11— (Ssys €)M < €
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E-unitary semigroups and relation with property A

Recall: G(S) =S/o, where sot iff se = te for some e € E (S5)

e Known as the maximal homomorphic image of S
e G(S) is always a group, and let 0: S — G(S) the quotient map

Theorem (Duncan and Namioka - 1978)
S is amenable if, and only if, G(S) is amenable.

However: G(S) loses information of S ~ might even G(S) = {1}

Definition (classical)

S is E-unitary if 0:S - G(S) is injective in every L-class.

Theorem (Anantharaman-Delaroche - 2016)
Let S be E-unitary. C;(S) is exact < G(S) is exact.
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E-unitary semigroups and relation with property A

Goal: prove Anantharaman-Delaroche’s result geometrically

Theorem (Lledd, M. - 2021)

Let S = (K) be E-unitary and (S, K) admit a finite labeling.
As has property A < G(S) has property A.

(Recall that, by Ozawa, property A = exactness for groups)
Proof =: given ¢&:S — (1 (5)}r for S let

GG (S) » 11(G(S)), where Gy(s) (0 (£)) = lim Ese, (ter)
for some e; >---> e, >---€ E(S) is eventually below everything

e Locally G(S) is Ay, for e sufficiently small
e Hence, the same approx. for As does the trick for G(S)

Proof <: only known via C*-arguments
50



Higson-Lafforgue-Skandalis and Willett’'s example

Example: box space without property A
e [y =(a,b| -) free non-abelian group on 2 elements
o Let { Ny}, be a descending sequence of normal subgroups
of finite index such that ngeyNg = {1}

e S:= UkeN]FZ/Nky where [g]l : [h]J = [gh]min{i,j}'

Remark:

(1) S is amenable ~ as it has a 0
(2) S does not have property A ~ L-classes are complicated
(3) S does not admit a finite labeling ~ same as (N, min)

Fa/No<F2/Ny<Fa/No<Fa/Nz 51



Paterson’s universal groupoid

Recall the construction of Paterson’s universal groupoid G (S):

e Unit space Gy (S)@ = {¢ c E(S) filter} c {0,1}F)
e Action of S: 05: D% _— DO, 05(¢)={e> SfS™ }ree

s*s

e Groupoid Gy (S) = {[s,&] wherese Sand € € Df*s}
Subject to some germ-like equivalence relation...

e Operation: [t,05 (£)] - [s,&] = [ts, €]
Example: B =(a,a*|a*a=1) then

o Gy (B)O =E(S)u{oo} = Nu{oo}

o Gy (B)k = {[S k]}s *s>akgrk — {[ )U k]}
o Gy (B),
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Groupoid amenability, nuclearity and weak containment

Theorem (Lance '70s, for groups!)
G is amenable < C/ (G) is nuclear < C) (G) = C* (G)

This has become a driving force of groupoid amenability:

Definition (Renault - 1980)
G (étale) is amenable if for any € > 0 and compact K c G there is
a cont. compc. supported 1: G — [0,1] such that for all s€ K

1= Zmyr@yn (W) <& and  Topy-r(e) In(h) —n(hg)l<e

Question:

e Relation between Gy (S) amenable and S amenable?
e How does Gy (S) enter the picture?
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Groupoid amenability vs domain-measurability

Question: relation between Gy (S) amenable and S amenable?

Short answer: no relation, as

(1) S amenable/domain-measurable ~ traces in Rs
(2) Gy (S) amenable ~ nuclearity of C; (S) ~ nuclearity of Rs

Examples:

(i) Fou{0} is amenable but non-nuclear reduced C*-algebra

(Can also be done with a box space with a prop. (T) group)
(i) G (F2u{0}) # C* (F2u{0})
(iii) Nica gave a non-amenable semigroup with nuclear C*-algebra

54



	Main schemes and questions
	Inverse semigroups and Day's amenability
	Day's amenability split
	Paradoxicality and Følner's condition
	2-norm approximations and amenable traces

	Coarse geometry of an inverse semigroup
	Finite labelings and uniform Roe algebras
	Domain-measurability as a coarse invariant
	Property A as a C*-property

	The universal groupoid and its amenability
	Norm approximations and quasi-diagonality
	Summary and future work
	Some extra slides

