Amenability and coarse geometry of (inverse) semigroups and C*-algebras

Diego Martínez March 5th, 2021

Universidad Carlos III de Madrid - Instituto de Ciencias Matemáticas *lumartin@math.uc3m.es*

```
Thesis (e-)defense
```

Outline

- (1) Main schemes and questions
- Inverse semigroups and Day's amenability
 Day's amenability split
 The type semigroup and Følner's condition
 2-norm approximations and amenable traces
- (3) Coarse geometry of an inverse semigroup
 Finite labelings and uniform Roe algebras
 Domain-measurability as a coarse invariant
 Property A as a C*-property
- (4) The universal groupoid and its amenability
- (5) Norm approximations and quasi-diagonality

1. Main schemes and questions

Pyramid schemes and paradoxical behaviors

Do Ponzi schemes exist?

Pyramid schemes and paradoxical behaviors

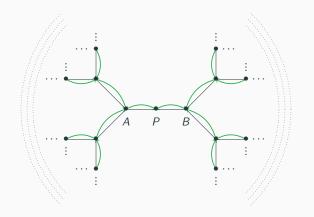
Do Ponzi schemes exist?

- P asks A and B, these give P 1\$; and so on; and on...
- Everybody gains money in a finite time by moving it around
- Needs infinitely many people

Pyramid schemes and paradoxical behaviors

Do Ponzi schemes exist?

- *P* asks *A* and *B*, these give *P* 1\$; and so on; and on...
- Everybody gains money in a finite time by moving it around
- Needs infinitely many people in a certain form:



Groups: von Neuman, Tarski and Følner

Let G be a countable and discrete group:

- G is <u>amenable</u> if there is a prob. measure $\mu: G \to [0,1]$ such that $\mu(g^{-1}A) = \mu(A)$ for all $g \in G$ and $A \subset G$
- G satisfies the <u>Følner condition</u> if for every $\varepsilon > 0$ and $K \subseteq G$ there is $F \subseteq G$ such that $|KF \cup F| \le (1 + \varepsilon)|F|$
- *G* is <u>paradoxical</u> if there are $A_i, B_j \subset G$ and $a_i, b_j \in G$ with $\overline{G} = \bigsqcup_{i=1}^n a_i A_i = \bigsqcup_{i=1}^m b_j B_j \supset (\bigsqcup_{i=1}^n A_i) \sqcup (\bigsqcup_{i=1}^m B_j)$

Groups: von Neuman, Tarski and Følner

Let G be a countable and discrete group:

- G is <u>amenable</u> if there is a prob. measure $\mu: G \to [0,1]$ such that $\mu(g^{-1}A) = \mu(A)$ for all $g \in G$ and $A \subset G$
- G satisfies the <u>Følner condition</u> if for every $\varepsilon > 0$ and $K \subseteq G$ there is $F \subseteq G$ such that $|KF \cup F| \le (1 + \varepsilon)|F|$
- *G* is <u>paradoxical</u> if there are $A_i, B_j \subset G$ and $a_i, b_j \in G$ with $G = \bigsqcup_{i=1}^n a_i A_i = \bigsqcup_{j=1}^m b_j B_j \supset (\bigsqcup_{i=1}^n A_i) \sqcup (\bigsqcup_{j=1}^m B_j)$

Theorem (von Neumann 1927, Tarski 1929, Følner 1956) *G* is amenable \Leftrightarrow *G* satisfies the Følner condition \Leftrightarrow *G* is not paradoxical

We call these equivalences classical

Groups: von Neuman, Tarski and Følner

Let G be a countable and discrete group:

- G is <u>amenable</u> if there is a prob. measure $\mu: G \to [0,1]$ such that $\mu(g^{-1}A) = \mu(A)$ for all $g \in G$ and $A \subset G$
- G satisfies the <u>Følner condition</u> if for every $\varepsilon > 0$ and $K \subseteq G$ there is $F \subseteq G$ such that $|KF \cup F| \le (1 + \varepsilon)|F|$
- *G* is <u>paradoxical</u> if there are $A_i, B_j \subset G$ and $a_i, b_j \in G$ with $G = \bigsqcup_{i=1}^n a_i A_i = \bigsqcup_{j=1}^m b_j B_j \supset (\bigsqcup_{i=1}^n A_i) \sqcup (\bigsqcup_{j=1}^m B_j)$

Theorem (von Neumann 1927, Tarski 1929, Følner 1956) *G* is amenable \Leftrightarrow *G* satisfies the Følner condition \Leftrightarrow *G* is not paradoxical

We call these equivalences classical

First goal: extend these to inverse semigroups

2. Inverse semigroups and Day's amenability

Definition (Wagner 1952 and Preston 1954)

S is an *inverse semigroup* if for every $s \in S$ there is a unique $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$

Definition (Wagner 1952 and Preston 1954)

S is an *inverse semigroup* if for every $s \in S$ there is a unique $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$

Remarks:

• Bicyclic monoid: $\mathcal{B} = \langle a, a^* \mid a^*a = 1 \rangle = \{a^i a^{*j} \mid i, j \ge 0\}$

Definition (Wagner 1952 and Preston 1954)

S is an *inverse semigroup* if for every $s \in S$ there is a unique $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$

Remarks:

• Bicyclic monoid: $\mathcal{B} = \langle a, a^* \mid a^*a = 1 \rangle = \{a^i a^{*j} \mid i, j \ge 0\}$

•
$$E(S) = \{e \in S \mid e^2 = e\} = \{s^* s \mid s \in S\}$$
 is commutative

•
$$D_{s^*s} := \{x \in S \mid x = s^*sx\} = s^*s \cdot S$$
 is the domain of s^*s

•
$$\overline{s: D_{s^*s} \to D_{ss^*}}$$
, where $x \mapsto sx$ is a bijection

Definition (Wagner 1952 and Preston 1954)

S is an *inverse semigroup* if for every $s \in S$ there is a unique $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$

Remarks:

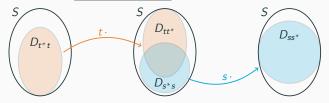
• Bicyclic monoid: $\mathcal{B} = \langle a, a^* \mid a^*a = 1 \rangle = \{a^i a^{*j} \mid i, j \ge 0\}$

•
$$E(S) = \{e \in S \mid e^2 = e\} = \{s^* s \mid s \in S\}$$
 is commutative

•
$$D_{s^*s} := \{x \in S \mid x = s^*sx\} = s^*s \cdot S$$
 is the domain of s^*s

•
$$\overline{s: D_{s^*s} \to D_{ss^*}}$$
, where $x \mapsto sx$ is a bijection

Induces the *Wagner-Preston* representation $v: S \rightarrow \mathcal{I}(S)$:



Definition (Wagner 1952 and Preston 1954)

S is an *inverse semigroup* if for every $s \in S$ there is a unique $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$

Remarks:

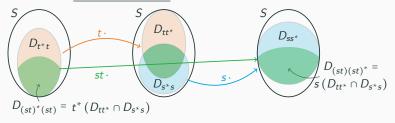
• Bicyclic monoid: $\mathcal{B} = \langle a, a^* \mid a^*a = 1 \rangle = \{a^i a^{*j} \mid i, j \ge 0\}$

•
$$E(S) = \{e \in S \mid e^2 = e\} = \{s^* s \mid s \in S\}$$
 is commutative

•
$$D_{s^*s} := \{x \in S \mid x = s^*sx\} = s^*s \cdot S$$
 is the domain of s^*s

•
$$\overline{s: D_{s^*s} \to D_{ss^*}}$$
, where $x \mapsto sx$ is a bijection

Induces the *Wagner-Preston* representation $v: S \rightarrow \mathcal{I}(S)$:



Key idea: multiplication is not injective

 s^* is only the inverse of s up to $s^*s \rightsquigarrow local$ inverse

Key idea: multiplication is <u>not</u> injective s^* is only the inverse of s up to $s^*s \rightsquigarrow local$ inverse $\underline{s^{-1}A := \{x \in S \mid sx \in A\}} = \text{pre-image of } A$

Key idea: multiplication is <u>not</u> injective s^* is only the inverse of s up to $s^*s \rightsquigarrow local$ inverse $\underline{s^{-1}A := \{x \in S \mid sx \in A\}}$ = pre-image of A

Definition (Day - 1957, for general semigroups)

S is <u>amenable</u> if there is a prob. measure $\mu: \mathcal{P}(S) \to [0,1]$ such that $\mu(s^{-1}A) = \mu(A)$ for every $s \in S$ and $A \subset S$

Examples: amenable groups, and

- $0 \in S \rightsquigarrow \mu(\{0\}) = 1.$
- $\mathbb{F}_2 \sqcup \{1\}$ is not amenable.

Key idea: multiplication is <u>not</u> injective s^* is only the inverse of s up to $s^*s \sim local$ inverse $\underline{s^{-1}A} := \{x \in S \mid sx \in A\}$ = pre-image of A

Definition (Day - 1957, for general semigroups)

S is <u>amenable</u> if there is a prob. measure $\mu: \mathcal{P}(S) \to [0,1]$ such that $\mu(s^{-1}A) = \mu(A)$ for every $s \in S$ and $A \subset S$

Examples: amenable groups, and

- $0 \in S \rightsquigarrow \mu(\{0\}) = 1.$
- $\mathbb{F}_2 \sqcup \{1\}$ is not amenable.

Remarks:

- Day follows closely von Neumann's steps
- This definition is irksome, as it involves pre-images

2. Inverse semigroups and Day's amenability

2.1. Day's amenability split

Pick S and μ invariant measure $(\mu(A) = \mu(s^{-1}A))$. Then:

Day's amenability framed in the inverse case

Pick S and μ invariant measure $(\mu(A) = \mu(s^{-1}A))$. Then: (1) $\mu(B)$ Pick S and μ invariant measure $(\mu(A) = \mu(s^{-1}A))$. Then:

(1) $\mu(B) = \mu(B \cap D_{ss^*}) + \mu(B \setminus D_{ss^*})$

Pick S and μ invariant measure $(\mu(A) = \mu(s^{-1}A))$. Then: (1) $\mu(B) = \mu(B \cap D_{ss^*}) + \mu(s^{-1}(B \setminus D_{ss^*}))$ Pick S and μ invariant measure $(\mu(A) = \mu(s^{-1}A))$. Then: (1) $\mu(B) = \mu(B \cap D_{ss^*}) + \mu(s^{-1}(B \setminus D_{ss^*})) = \mu(B \cap D_{ss^*})$

Day's amenability framed in the inverse case

Pick *S* and μ invariant measure $(\mu (A) = \mu (s^{-1}A))$. Then: (1) $\mu (B) = \mu (B \cap D_{ss^*}) + \mu (s^{-1} (B \setminus D_{ss^*})) = \mu (B \cap D_{ss^*})$ (2) If $A \subset D_{ss^*}$ then $\mu (A)$ Pick *S* and μ invariant measure $(\mu (A) = \mu (s^{-1}A))$. Then: (1) $\mu (B) = \mu (B \cap D_{ss^*}) + \mu (s^{-1} (B \setminus D_{ss^*})) = \mu (B \cap D_{ss^*})$ (2) If $A \subset D_{ss^*}$ then $\mu (A) = \mu (s^{-1}A)$ Pick *S* and μ invariant measure $(\mu(A) = \mu(s^{-1}A))$. Then: (1) $\mu(B) = \mu(B \cap D_{ss^*}) + \mu(s^{-1}(B \setminus D_{ss^*})) = \mu(B \cap D_{ss^*})$ (2) If $A \subset D_{ss^*}$ then $\mu(A) = \mu(s^{-1}A) = \mu(s^*A) + \mu(s^{-1}A \setminus s^*A)$ Pick *S* and μ invariant measure $(\mu(A) = \mu(s^{-1}A))$. Then: (1) $\mu(B) = \mu(B \cap D_{ss^*}) + \mu(s^{-1}(B \setminus D_{ss^*})) = \mu(B \cap D_{ss^*})$ (2) If $A \subset D_{ss^*}$ then $\mu(A) = \mu(s^{-1}A) = \mu(s^*A) + \mu((s^*)^{-1}(s^{-1}A \setminus s^*A))$ Pick *S* and μ invariant measure $(\mu (A) = \mu (s^{-1}A))$. Then: (1) $\mu (B) = \mu (B \cap D_{ss^*}) + \mu (s^{-1} (B \setminus D_{ss^*})) = \mu (B \cap D_{ss^*})$ (2) If $A \subset D_{ss^*}$ then $\mu (A) = \mu (s^{-1}A) = \mu (s^*A) + \mu ((s^*)^{-1} (s^{-1}A \setminus s^*A))$ $= \mu (s^*A)$

Pick *S* and
$$\mu$$
 invariant measure $(\mu(A) = \mu(s^{-1}A))$. Then:
(1) $\mu(B) = \mu(B \cap D_{ss^*}) + \mu(s^{-1}(B \setminus D_{ss^*})) = \mu(B \cap D_{ss^*})$
(2) If $A \subset D_{ss^*}$ then
 $\mu(A) = \mu(s^{-1}A) = \mu(s^*A) + \mu((s^*)^{-1}(s^{-1}A \setminus s^*A))$
 $= \mu(s^*A)$

Theorem (Ara, Lledó, M. - 2020)

 μ is invariant \Leftrightarrow both following conditions are satisfied:

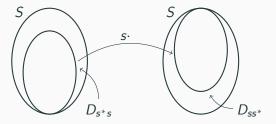
(1) <u>Localization</u>: $\mu(B) = \mu(B \cap D_{s^*s})$ for all $s \in S, B \subset S$.

(2) <u>Domain-measure</u>: $\mu(A) = \mu(sA)$ for all $A \subset D_{s^*s}$.

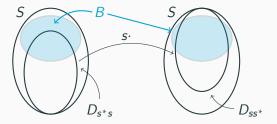
- All amenable semigroups.
- Non-ame. & domain-measurable: $S = \mathbb{F}_2 \sqcup \{1\}$ and $\mu = \delta_1$.

- All amenable semigroups.
- Non-ame. & domain-measurable: $S = \mathbb{F}_2 \sqcup \{1\}$ and $\mu = \delta_1$.

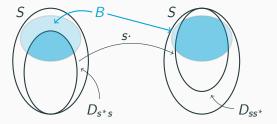
- All amenable semigroups.
- Non-ame. & domain-measurable: $S = \mathbb{F}_2 \sqcup \{1\}$ and $\mu = \delta_1$.



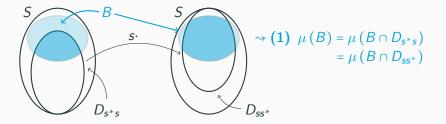
- All amenable semigroups.
- Non-ame. & domain-measurable: $S = \mathbb{F}_2 \sqcup \{1\}$ and $\mu = \delta_1$.



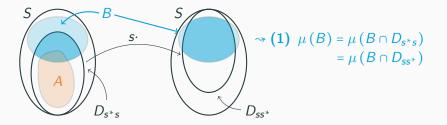
- All amenable semigroups.
- Non-ame. & domain-measurable: $S = \mathbb{F}_2 \sqcup \{1\}$ and $\mu = \delta_1$.



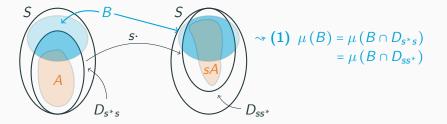
- All amenable semigroups.
- Non-ame. & domain-measurable: $S = \mathbb{F}_2 \sqcup \{1\}$ and $\mu = \delta_1$.



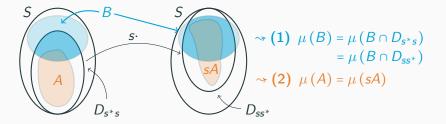
- All amenable semigroups.
- Non-ame. & domain-measurable: $S = \mathbb{F}_2 \sqcup \{1\}$ and $\mu = \delta_1$.



- All amenable semigroups.
- Non-ame. & domain-measurable: $S = \mathbb{F}_2 \sqcup \{1\}$ and $\mu = \delta_1$.



- All amenable semigroups.
- Non-ame. & domain-measurable: $S = \mathbb{F}_2 \sqcup \{1\}$ and $\mu = \delta_1$.



2. Inverse semigroups and Day's amenability

2.2. Paradoxicality and Følner's condition

Følner & paradoxicality ~> from a *domain point of view*

Følner & paradoxicality ~> from a *domain point of view*

Definition (Ara, Lledó, M. - 2020)

Let S be a (countable) inverse semigroup.

(1) S is domain-Følner if there are
$$F_n \subseteq S$$
 such that
 $|s(F_n \cap D_{s^*s}) \cup F_n| / |F_n| \to 1$ for every $s \in S$

(2) *S* is paradoxical if
$$\exists s_i, t_j \in S$$
, $A_i \subset D_{s_i^* s_i}$ and $B_j \subset D_{t_j^* t_j}$ with
 $S = s_1 A_1 \sqcup \cdots \sqcup s_n A_n = t_1 B_1 \sqcup \cdots \sqcup t_m B_m$
 $\supset A_1 \sqcup \cdots \sqcup A_n \sqcup B_1 \sqcup \cdots \sqcup B_m$

Følner & paradoxicality ~ from a *domain point of view*

Definition (Ara, Lledó, M. - 2020)

Let S be a (countable) inverse semigroup.

(1) S is domain-Følner if there are
$$F_n \subseteq S$$
 such that
 $|s(F_n \cap D_{s^*s}) \cup F_n| / |F_n| \to 1$ for every $s \in S$

(2) *S* is paradoxical if
$$\exists s_i, t_j \in S$$
, $A_i \subset D_{s_i^* s_i}$ and $B_j \subset D_{t_j^* t_j}$ with
 $S = s_1 A_1 \sqcup \cdots \sqcup s_n A_n = t_1 B_1 \sqcup \cdots \sqcup t_m B_m$
 $\supset A_1 \sqcup \cdots \sqcup A_n \sqcup B_1 \sqcup \cdots \sqcup B_m$

Remarks: Note that if $F \cap D_{s^*s} = \emptyset$ then $|s(F \cap D_{s^*s}) \cup F| = |F|$

Theorem (Ara, Lledó, M. - 2020)

Let S be an inverse semigroup. The following are equivalent:

- (1) S is domain-measurable.
- (2) S is not paradoxical.
- (3) S is domain-Følner.

Theorem (Ara, Lledó, M. - 2020)

Let S be an inverse semigroup. The following are equivalent:

- (1) S is domain-measurable.
- (2) S is not paradoxical.
- (3) S is domain-Følner.

 $\underbrace{(3) \Rightarrow (1):}_{|B \cap F_n| = |s (B \cap F_n)| \le |sB \cap F_n| + |s (F_n \cap D_{s^*s}) \setminus F_n|,$ and hence, $\mu (B) \le \mu (sB)$ (the other ineq. follows similarly)

Theorem (Ara, Lledó, M. - 2020)

Let S be an inverse semigroup. The following are equivalent:

- (1) S is domain-measurable.
- (2) S is not paradoxical.
- (3) S is domain-Følner.

 $\underbrace{(3) \Rightarrow (1): \text{ consider } \mu(A) \coloneqq \lim_{n \to \omega} |A \cap F_n| / |F_n|. \text{ If } B \subset D_{s^*s} \text{ then } }_{|B \cap F_n| = |s(B \cap F_n)| \le |sB \cap F_n| + |s(F_n \cap D_{s^*s}) \setminus F_n|, \text{ and hence, } \mu(B) \le \mu(sB) \text{ (the other ineq. follows similarly)}$ $\underbrace{(1) \Rightarrow (2): \text{ Par. decompostion } + \text{ dom. measure } \sim \text{ Cont. } 2 \le 1$

Theorem (Ara, Lledó, M. - 2020)

Let S be an inverse semigroup. The following are equivalent:

- (1) S is domain-measurable.
- (2) S is not paradoxical.
- (3) S is domain-Følner.

 $\begin{array}{l} (\underline{3}) \Rightarrow (\underline{1}): \mbox{ consider } \mu \left(A \right) \coloneqq \lim_{n \to \omega} |A \cap F_n| / |F_n|. \mbox{ If } B \subset D_{s^*s} \mbox{ then } \\ \hline |B \cap F_n| = |s \left(B \cap F_n \right)| \leq |sB \cap F_n| + |s \left(F_n \cap D_{s^*s} \right) \smallsetminus F_n|, \mbox{ and hence, } \mu \left(B \right) \leq \mu \left(sB \right) \mbox{ (the other ineq. follows similarly)} \\ \hline (\underline{1}) \Rightarrow (\underline{2}): \mbox{ Par. decompostion } + \mbox{ dom. measure } \sim \mbox{ Cont. } 2 \leq 1 \\ \hline (\underline{2}) \Rightarrow (\underline{1}): \mbox{ based on constructing a } type semigroup \mbox{ Typ } (S), \mbox{ i.e., a commutative monoid that encapsulates when } \\ \mu \left(A \right) = \mu \left(B \right) \mbox{ for } A, B \subset S \end{array}$

Recall: Day's amenable \Leftrightarrow localized + dom. measurable **Theorem (Ara, Lledó, M. - 2020)** An inverse semigroup S is amenable iff there are $F_n \in S$ such that *eventually* $F_n \subset D_{S^*S}$ and $|sF_n \cup F_n| / |F_n| \rightarrow 1$ for all $s \in S$

Recall: Day's amenable \Leftrightarrow localized + dom. measurable **Theorem (Ara, Lledó, M. - 2020)** An inverse semigroup S is amenable iff there are $F_n \in S$ such that *eventually* $F_n \subset D_{s^*s}$ and $|sF_n \cup F_n| / |F_n| \to 1$ for all $s \in S$

Recall: Day's amenable \Leftrightarrow localized + dom. measurable **Theorem (Ara, Lledó, M. - 2020)** An inverse semigroup S is amenable iff there are $F_n \in S$ such that *eventually* $F_n \subset D_{s^*s}$ and $|sF_n \cup F_n| / |F_n| \to 1$ for all $s \in S$

$$B = D_1$$

$$a^3 a^3a^* a^3a^{*2} a^3a^{*3} \cdots$$

$$a^2 a^2a^* a^2a^{*2} a^2a^{*3} \cdots$$

$$a^3 a^{*2} a^{*3} a^{*3} \cdots$$

$$a^3 a^{*2} a^{*3} a^{*3} \cdots$$

$$a^3 a^{*2} a^{*3} \cdots$$

Recall: Day's amenable \Leftrightarrow localized + dom. measurable **Theorem (Ara, Lledó, M. - 2020)** An inverse semigroup S is amenable iff there are $F_n \in S$ such that *eventually* $F_n \subset D_{s^*s}$ and $|sF_n \cup F_n| / |F_n| \to 1$ for all $s \in S$

$$B = D_{1}$$

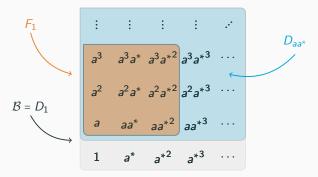
$$a^{3} a^{3}a^{*} a^{3}a^{*2} a^{3}a^{*3} \cdots$$

$$a^{2} a^{2}a^{*} a^{2}a^{*2} a^{2}a^{*3} \cdots$$

$$a^{2} a^{2}a^{*} a^{2}a^{*2} a^{2}a^{*3} \cdots$$

$$1 a^{*} a^{*2} a^{*3} \cdots$$

Recall: Day's amenable \Leftrightarrow localized + dom. measurable **Theorem (Ara, Lledó, M. - 2020)** An inverse semigroup S is amenable iff there are $F_n \in S$ such that *eventually* $F_n \subset D_{s^*s}$ and $|sF_n \cup F_n| / |F_n| \to 1$ for all $s \in S$



2. Inverse semigroups and Day's amenability

2.3. 2-norm approximations and amenable traces

Goal: use the Følner-type approx. to get approx. of \mathcal{R}_S \sim approximate the traces of \mathcal{R}_S and study them

Goal: use the Følner-type approx. to get approx. of \mathcal{R}_S \sim approximate the traces of \mathcal{R}_S and study them

The *left regular representation* of S is:

$$V: S \to \mathcal{B}\left(\ell^2 S\right), \ V_s \delta_x \coloneqq \begin{cases} \delta_{sx} & \text{if } x \in D_{s^*s} \\ 0 & \text{otherwise} \end{cases}$$

Moreover $\ell^{\infty}(S) \subset \mathcal{B}(\ell^2 S)$ as diagonal operators, and $\mathcal{R}_S \coloneqq C^*(\{fV_s \mid f \in \ell^{\infty}(S) \text{ and } s \in S\}) \subset \mathcal{B}(\ell^2 S).$

Goal: use the Følner-type approx. to get approx. of \mathcal{R}_S \sim approximate the traces of \mathcal{R}_S and study them

The left regular representation of S is:

$$V: S \to \mathcal{B}\left(\ell^2 S\right), \ V_s \delta_x \coloneqq \begin{cases} \delta_{sx} & \text{if } x \in D_{s^*s} \\ 0 & \text{otherwise} \end{cases}$$

Moreover $\ell^{\infty}(S) \subset \mathcal{B}(\ell^2 S)$ as diagonal operators, and $\mathcal{R}_S := C^*(\{fV_s \mid f \in \ell^{\infty}(S) \text{ and } s \in S\}) \subset \mathcal{B}(\ell^2 S).$

Theorem (classical - for groups!)

For arbitrary groups: $\mathcal{R}_{G} = \ell^{\infty}(G) \rtimes_{r} G = C_{u}^{*}(G)$.

Goal: use the Følner-type approx. to get approx. of \mathcal{R}_S \sim approximate the traces of \mathcal{R}_S and study them

The left regular representation of S is:

$$V: S \to \mathcal{B}\left(\ell^2 S\right), \ V_s \delta_x \coloneqq \begin{cases} \delta_{sx} & \text{if } x \in D_{s^*s} \\ 0 & \text{otherwise} \end{cases}$$

Moreover $\ell^{\infty}(S) \subset \mathcal{B}(\ell^2 S)$ as diagonal operators, and $\mathcal{R}_S \coloneqq C^*(\{fV_s \mid f \in \ell^{\infty}(S) \text{ and } s \in S\}) \subset \mathcal{B}(\ell^2 S).$

Theorem (classical - for groups!) For arbitrary groups: $\mathcal{R}_G = \ell^{\infty}(G) \rtimes_r G = C_u^*(G)$.

Proposition (Lledó, M. - 2021) One can give $S \sim \ell^{\infty}(S)$ such that $\mathcal{R}_{S} \cong \ell^{\infty}(S) \rtimes_{r} S$.

2-norm approximations and amenable traces

Theorem (Ara, Lledó, M. - 2020)

The following (among others) are equivalent:

- (1) S is domain-measurable. (2) S is not paradoxical.
- (3) \mathcal{R}_{S} has an amenable trace. (4) \mathcal{R}_{S} is not properly infinite.

2-norm approximations and amenable traces

Theorem (Ara, Lledó, M. - 2020)

The following (among others) are equivalent:

- (1) S is domain-measurable. (2) S is not paradoxical.
- (3) \mathcal{R}_S has an amenable trace. (4) \mathcal{R}_S is not properly infinite.

(1)
$$\Rightarrow$$
 (3): the functional $\tau: \mathcal{B}(\ell^2 S) \xrightarrow{\mathcal{E}} \ell^{\infty}(S) \xrightarrow{m} \mathbb{C}$, where

• $m(p_B) = \mu(B)$ and extended linearly

•
$$\mathcal{E}: \mathcal{B}(\ell^2 S) \to \ell^{\infty}(S)$$
, where $a \mapsto \sum_{x \in S} \langle \delta_x, a \delta_x \rangle$

is an amenable trace: $\tau(V_sT) = \tau(TV_s)$ for every $T \in \mathcal{B}(\ell^2 S)$

2-norm approximations and amenable traces

Theorem (Ara, Lledó, M. - 2020)

The following (among others) are equivalent:

- (1) S is domain-measurable. (2) S is not paradoxical.
- (3) \mathcal{R}_S has an amenable trace. (4) \mathcal{R}_S is not properly infinite.

(1)
$$\Rightarrow$$
 (3): the functional $\tau: \mathcal{B}(\ell^2 S) \xrightarrow{\mathcal{E}} \ell^{\infty}(S) \xrightarrow{m} \mathbb{C}$, where

- $m(p_B) = \mu(B)$ and extended linearly
- $\mathcal{E}: \mathcal{B}(\ell^2 S) \to \ell^{\infty}(S)$, where $a \mapsto \sum_{x \in S} \langle \delta_x, a \delta_x \rangle$

is an amenable trace: $\tau(V_sT) = \tau(TV_s)$ for every $T \in \mathcal{B}(\ell^2 S)$

Theorem (Ara, Lledó, M. - 2020)

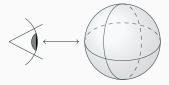
There is a bijection between the domain-measures of S and the traces of \mathcal{R}_S . In particular, all the traces of \mathcal{R}_S are amenable.

3. Coarse geometry of an inverse semigroup

Example (finite objects seen coarsely) (X, d) is quasi-isometric to a point $\Leftrightarrow \sup_{x,x' \in X} d(x,x') < \infty$.

Example (finite objects seen coarsely)

(X, d) is quasi-isometric to a point $\Leftrightarrow \sup_{x, x' \in X} d(x, x') < \infty$.



Example (finite objects seen coarsely)

(X, d) is quasi-isometric to a point $\Leftrightarrow \sup_{x, x' \in X} d(x, x') < \infty$.

Example (finite objects seen coarsely)

(X, d) is quasi-isometric to a point $\Leftrightarrow \sup_{x, x' \in X} d(x, x') < \infty$.

Example (finite objects seen coarsely)

(X, d) is quasi-isometric to a point $\Leftrightarrow \sup_{x, x' \in X} d(x, x') < \infty$.

Example (finite objects seen coarsely)

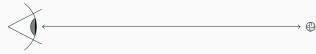
(X, d) is quasi-isometric to a point $\Leftrightarrow \sup_{x, x' \in X} d(x, x') < \infty$.

Example (finite objects seen coarsely)

(X, d) is quasi-isometric to a point $\Leftrightarrow \sup_{x, x' \in X} d(x, x') < \infty$.

Example (finite objects seen coarsely)

(X, d) is quasi-isometric to a point $\Leftrightarrow \sup_{x, x' \in X} d(x, x') < \infty$.



Group coarse geometry

Recall: Cayley graph construction $\rightsquigarrow G = \langle g_1^{\pm 1}, \dots, g_n^{\pm 1} | \text{ relations } \rangle$:

- Graph \rightsquigarrow Cay $(G, \{g_1, \ldots, g_n\}) \coloneqq (V, E)$,
- Vertices $\rightsquigarrow V := G$
- Edges $\rightsquigarrow E := \{(x, g_i^{\pm 1}x) \mid x \in G \text{ and } i = 1, \dots, n\}.$

Group coarse geometry

Recall: Cayley graph construction $\rightsquigarrow G = \langle g_1^{\pm 1}, \dots, g_n^{\pm 1} | \text{ relations } \rangle$:

- Graph \rightsquigarrow Cay $(G, \{g_1, \ldots, g_n\}) \coloneqq (V, E)$,
- Vertices $\rightsquigarrow V := G$
- Edges $\rightsquigarrow E := \{(x, g_i^{\pm 1}x) \mid x \in G \text{ and } i = 1, \dots, n\}.$

Group coarse geometry

Recall: Cayley graph construction $\rightsquigarrow G = \langle g_1^{\pm 1}, \dots, g_n^{\pm 1} | \text{ relations } \rangle$:

- Graph \rightsquigarrow Cay $(G, \{g_1, \ldots, g_n\}) \coloneqq (V, E)$,
- Vertices $\rightsquigarrow V := G$
- Edges $\rightsquigarrow E := \{(x, g_i^{\pm 1}x) \mid x \in G \text{ and } i = 1, \dots, n\}.$

$$\cdots \quad \underbrace{ \mathbb{Z} = \langle \pm 2, \pm 3 \rangle}_{\cdots \qquad \cdots \qquad \mathbb{Z} = \langle \pm 1 \rangle$$

Proposition (classical)

The large scale geometry of the Cayley graph of G does <u>not</u> depend on the generators

Goal: reproduce these constructions for inverse semigroups i.e., construct Λ_S undirected graph such that $\mathcal{R}_S \cong C_u^*(\Lambda_S)$

Infinite distances, and why they are necessary

Remark: we need to consider *extended* metric spaces **Proposition (Lledó, M. - 2021)** Let $x, y \in S$, and $d: S \times S \rightarrow [0, \infty]$ be a distance. (1) If $d(x, y) < \infty$ then $M_{x,y} \in C_u^*(S, d)$ (2) If $x^*x \neq y^*y$ then $M_{x,y} \notin \mathcal{R}_S$

Hence if $x^*x \neq y^*y$ then $d(x,y) = \infty$

Infinite distances, and why they are necessary

Remark: we need to consider *extended* metric spaces **Proposition (Lledó, M. - 2021)** Let $x, y \in S$, and $d: S \times S \rightarrow [0, \infty]$ be a distance. (1) If $d(x, y) < \infty$ then $M_{x,y} \in C_u^*(S, d)$ (2) If $x^*x \neq y^*y$ then $M_{x,y} \notin \mathcal{R}_S$ Hence if $x^*x \neq y^*y$ then $d(x, y) = \infty$

Green's relations:

- $x\mathcal{L}y$ if $x^*x = y^*y$
- $x\mathcal{R}y$ if $xx^* = yy^*$
- $\mathcal{H} = \mathcal{L}$ and \mathcal{R}
- $\mathcal{D} = \mathcal{L} \circ \mathcal{R}$

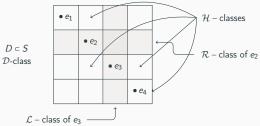
Infinite distances, and why they are necessary

Remark: we need to consider *extended* metric spaces **Proposition (Lledó, M. - 2021)** Let $x, y \in S$, and $d: S \times S \rightarrow [0, \infty]$ be a distance. (1) If $d(x, y) < \infty$ then $M_{x,y} \in C_u^*(S, d)$ (2) If $x^*x \neq y^*y$ then $M_{x,y} \notin \mathcal{R}_S$

Hence if $x^*x \neq y^*y$ then $d(x,y) = \infty$

Green's relations:

- $x\mathcal{L}y$ if $x^*x = y^*y$
- $x\mathcal{R}y$ if $xx^* = yy^*$
- $\mathcal{H} = \mathcal{L}$ and \mathcal{R}
- $\mathcal{D} = \mathcal{L} \circ \mathcal{R}$



Definition (Schützenberger - 1959)

Let $S = \langle K \rangle$, where $K = K^*$. Given an \mathcal{L} -class $L \subset S$, let Λ_L be

- the graph whose vertices are the points of L and
- where $x, y \in L$ are joined by a k-labeled edge if kx = y.

Likewise, let $\Lambda_S = \sqcup_{e \in E(S)} \Lambda_{L_e}$.

Definition (Schützenberger - 1959)

Let $S = \langle K \rangle$, where $K = K^*$. Given an \mathcal{L} -class $L \subset S$, let Λ_L be

- the graph whose vertices are the points of L and
- where $x, y \in L$ are joined by a k-labeled edge if kx = y.

```
Likewise, let \Lambda_S = \sqcup_{e \in E(S)} \Lambda_{L_e}.
```

- Construct the (left)
- Cayley graph w.r.t. K
- Erase directed arrows

Definition (Schützenberger - 1959)

Let $S = \langle K \rangle$, where $K = K^*$. Given an \mathcal{L} -class $L \subset S$, let Λ_L be

- the graph whose vertices are the points of L and
- where $x, y \in L$ are joined by a k-labeled edge if kx = y.

Likewise, let $\Lambda_S = \sqcup_{e \in E(S)} \Lambda_{L_e}$.

Example: $\mathcal{B} \coloneqq \langle a, a^* \mid a^*a = 1 \rangle$

"Algorithm":

• Construct the (left)

Cayley graph w.r.t. K

• Erase directed arrows

Definition (Schützenberger - 1959)

Let $S = \langle K \rangle$, where $K = K^*$. Given an \mathcal{L} -class $L \subset S$, let Λ_L be

- the graph whose vertices are the points of L and
- where $x, y \in L$ are joined by a k-labeled edge if kx = y.

Likewise, let $\Lambda_S = \sqcup_{e \in E(S)} \Lambda_{L_e}$.

	Example	e: <i>B</i>	:= {a	a, a*	a* a	$=1\rangle$
		÷	÷	÷	÷	÷
(left)				Ī	a ³ a* ³	
t. <i>K</i>		a ²	a ² a*	a ² a* ²	a ² a* ³	
arrows		a 	aa* 	aa* ²	aa ^{*3}	
		1 —	→ a* —	→a ^{*2} —	→a ^{*3}	

- Construct the (left) Cayley graph w.r.t. *K*
- Erase directed arrows

Definition (Schützenberger - 1959)

Let $S = \langle K \rangle$, where $K = K^*$. Given an \mathcal{L} -class $L \subset S$, let Λ_L be

- the graph whose vertices are the points of L and
- where $x, y \in L$ are joined by a k-labeled edge if kx = y.

Likewise, let $\Lambda_S = \sqcup_{e \in E(S)} \Lambda_{L_e}$.

	Example: <i>J</i>	Β := ⟨	a, a^*	a* a =	$ 1\rangle$
	÷	÷	÷	÷	
left) <i>K</i>			Ī	² a ³ a ^{*3} · ² a ² a ^{*3} ·	
rrows	- 1 -			aa ^{*3} . →a ^{*3} .	

- Construct the (left) Cayley graph w.r.t. *K*
- Erase directed arrows

Definition (Schützenberger - 1959)

Let $S = \langle K \rangle$, where $K = K^*$. Given an \mathcal{L} -class $L \subset S$, let Λ_L be

- the graph whose vertices are the points of L and
- where $x, y \in L$ are joined by a k-labeled edge if kx = y.

Likewise, let $\Lambda_S = \sqcup_{e \in E(S)} \Lambda_{L_e}$.

	Example: $\mathcal{B} \coloneqq \langle a, a^* \mid a^*a = 1 \rangle$	
	1 1 1 1 <i>2</i>	
eft) K	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
OWS	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

- Construct the (left) Cayley graph w.r.t. *K*
- Erase directed arrows

Definition (Schützenberger - 1959)

Let $S = \langle K \rangle$, where $K = K^*$. Given an \mathcal{L} -class $L \subset S$, let Λ_L be

- the graph whose vertices are the points of L and
- where $x, y \in L$ are joined by a k-labeled edge if kx = y.

Likewise, let $\Lambda_S = \sqcup_{e \in E(S)} \Lambda_{L_e}$.

	Example: £	3 := ($a, a^* \mid$	$a^*a = 1\rangle$
	÷	÷	÷	÷ .*
"Algorithm":	a ³	a ³ a*	a ³ a*2	a ³ a* ³
• Construct the (left)				
Cayley graph w.r.t. <i>K</i>	a ²	a ² a*	a²a*² 	a ² a ^{*3} ···
• Erase directed arrows	a	aa*	aa ^{*2}	aa ^{*3} · · ·
	1	a*	a*2	a* ³

Definition (Schützenberger - 1959)

Let $S = \langle K \rangle$, where $K = K^*$. Given an \mathcal{L} -class $L \subset S$, let Λ_L be

- the graph whose vertices are the points of L and
- where $x, y \in L$ are joined by a k-labeled edge if kx = y.

Likewise, let $\Lambda_S = \sqcup_{e \in E(S)} \Lambda_{L_e}$.

	Example: £	3 := ($a, a^* \mid$	$a^*a = 1\rangle$
	:	÷	÷	÷ .*
"Algorithm":	a ³	a ³ a*	a ³ a*2	a ³ a* ³
• Construct the (left)				
Cayley graph w.r.t. K	a ²	a ² a*	a ² a* ²	a ² a ^{*3} ···
• Erase directed arrows	a a	aa*	aa* ²	aa ^{*3} · · ·
	1	a^*	a*2	a* ³

Remark: not all graphs are Cayley graphs. However:

Theorem (Stephen - 1990)

{connected graphs} = {Schützenberger graphs}

Remark: not all graphs are Cayley graphs. However:

Theorem (Stephen - 1990)

{connected graphs} = {Schützenberger graphs}

Lemma (right invariance) Let $S = \langle K \rangle$. If $x \in D_{s^*s}$ then $d(x, sx) \le d(s^*s, s)$. In particular, if $xx^* = s^*s$ then $d(x, sx) = d(s^*s, s)$.

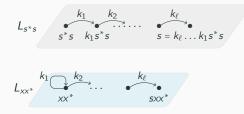
$$L_{s^*s} \xrightarrow{k_1 \quad k_2 \quad \dots \quad k_{\ell}}_{s^*s \quad k_1s^*s} \xrightarrow{s = k_{\ell} \dots \quad k_1s^*s}$$

Remark: not all graphs are Cayley graphs. However:

Theorem (Stephen - 1990)

{connected graphs} = {Schützenberger graphs}

Lemma (right invariance) Let $S = \langle K \rangle$. If $x \in D_{s^*s}$ then $d(x, sx) \le d(s^*s, s)$. In particular, if $xx^* = s^*s$ then $d(x, sx) = d(s^*s, s)$.

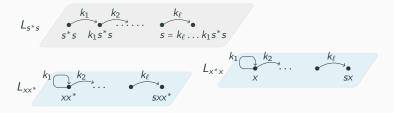


Remark: not all graphs are Cayley graphs. However:

Theorem (Stephen - 1990)

{connected graphs} = {Schützenberger graphs}

Lemma (right invariance) Let $S = \langle K \rangle$. If $x \in D_{s^*s}$ then $d(x, sx) \le d(s^*s, s)$. In particular, if $xx^* = s^*s$ then $d(x, sx) = d(s^*s, s)$.

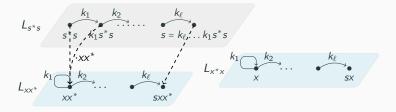


Remark: not all graphs are Cayley graphs. However:

Theorem (Stephen - 1990)

{connected graphs} = {Schützenberger graphs}

Lemma (right invariance) Let $S = \langle K \rangle$. If $x \in D_{s^*s}$ then $d(x, sx) \le d(s^*s, s)$. In particular, if $xx^* = s^*s$ then $d(x, sx) = d(s^*s, s)$.

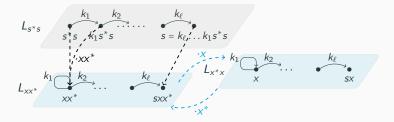


Remark: not all graphs are Cayley graphs. However:

Theorem (Stephen - 1990)

{connected graphs} = {Schützenberger graphs}

Lemma (right invariance) Let $S = \langle K \rangle$. If $x \in D_{s^*s}$ then $d(x, sx) \le d(s^*s, s)$. In particular, if $xx^* = s^*s$ then $d(x, sx) = d(s^*s, s)$.



3. Coarse geometry of an inverse semigroup

3.1. Finite labelings and uniform Roe algebras

Proposition (Lledó, M. - 2021)

Let $S = \langle K \rangle$. Then $\mathcal{R}_S \subset C_u^*(\Lambda_S)$.

Proof: generators of \mathcal{R}_S have finite propagation.

Proposition (Lledó, M. - 2021)

Let $S = \langle K \rangle$. Then $\mathcal{R}_S \subset C_u^*(\Lambda_S)$.

Proof: generators of \mathcal{R}_S have finite propagation.

<u>Warning</u>: Sometimes $\mathcal{R}_{S} \subsetneq C_{u}^{*}(\Lambda_{S})$, e.g., $S = (\mathbb{N}, \min)$ where $\mathcal{R}_{S} = c_{0}(\mathbb{N}) \subsetneq \ell^{\infty}(\mathbb{N}) = C_{u}^{*}(\Lambda_{S})$

Proposition (Lledó, M. - 2021)

Let $S = \langle K \rangle$. Then $\mathcal{R}_S \subset C_u^*(\Lambda_S)$.

Proof: generators of \mathcal{R}_S have finite propagation.

Warning: Sometimes
$$\mathcal{R}_{S} \not\subseteq C_{u}^{*}(\Lambda_{S})$$
, e.g., $S = (\mathbb{N}, \min)$ where
 $\mathcal{R}_{S} = c_{0}(\mathbb{N}) \not\subseteq \ell^{\infty}(\mathbb{N}) = C_{u}^{*}(\Lambda_{S})$

Key: for large $r \ge 0 \not\supseteq F \Subset S$ labeling the paths in Λ_S of length r

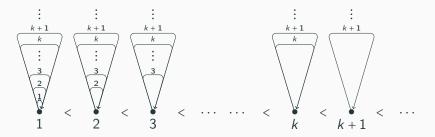
Proposition (Lledó, M. - 2021)

Let $S = \langle K \rangle$. Then $\mathcal{R}_S \subset C_u^*(\Lambda_S)$.

Proof: generators of \mathcal{R}_S have finite propagation.

<u>Warning</u>: Sometimes $\mathcal{R}_{S} \subsetneq C_{u}^{*}(\Lambda_{S})$, e.g., $S = (\mathbb{N}, \min)$ where $\mathcal{R}_{S} = c_{0}(\mathbb{N}) \subsetneq \ell^{\infty}(\mathbb{N}) = C_{u}^{*}(\Lambda_{S})$

Key: for large $r \ge 0 \not\supseteq F \Subset S$ labeling the paths in Λ_S of length r



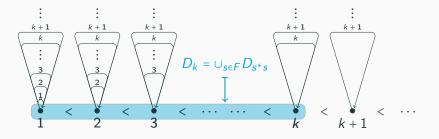
Proposition (Lledó, M. - 2021)

Let $S = \langle K \rangle$. Then $\mathcal{R}_S \subset C_u^*(\Lambda_S)$.

Proof: generators of \mathcal{R}_S have finite propagation.

<u>Warning:</u> Sometimes $\mathcal{R}_{S} \subsetneq C_{u}^{*}(\Lambda_{S})$, e.g., $S = (\mathbb{N}, \min)$ where $\mathcal{R}_{S} = c_{0}(\mathbb{N}) \subsetneq \ell^{\infty}(\mathbb{N}) = C_{u}^{*}(\Lambda_{S})$

Key: for large $r \ge 0 \not\supseteq F \Subset S$ labeling the paths in Λ_S of length r



Finite labeling II: a picture to top the explanation

Definition (Lledó, M. - 2021)

Let $S = \langle K \rangle$. We say (S, K) admits a *finite labeling* if for any $r \ge 0$ there is $F \Subset S$ such that if $d(s^*s, s) \le r$ then there is $m \in F$ such that $ms^*s = s$.

Finite labeling II: a picture to top the explanation

Definition (Lledó, M. - 2021)

Let $S = \langle K \rangle$. We say (S, K) admits a *finite labeling* if for any $r \ge 0$ there is $F \Subset S$ such that if $d(s^*s, s) \le r$ then there is $m \in F$ such that $ms^*s = s$.

Examples:

- (1) Finitely generated semigroups
- (2) F-inverse semigroups with Λ_S of bounded geometry

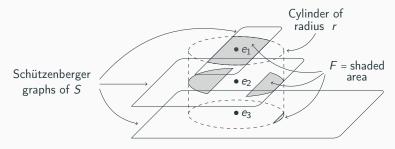
Finite labeling II: a picture to top the explanation

Definition (Lledó, M. - 2021)

Let $S = \langle K \rangle$. We say (S, K) admits a *finite labeling* if for any $r \ge 0$ there is $F \Subset S$ such that if $d(s^*s, s) \le r$ then there is $m \in F$ such that $ms^*s = s$.

Examples:

- (1) Finitely generated semigroups
- (2) F-inverse semigroups with Λ_S of bounded geometry



Finite labeling III: importance

Theorem (Lledó, M. - 2021)

 (S, \mathcal{K}) admits a finite labeling $\Leftrightarrow \mathcal{R}_S = \ell^{\infty}(S) \rtimes_r S = C_u^*(\Lambda_S).$

Proof ⇒: take $T \in C_u^*(\Lambda_S)$ such that prop $(T) = \sup \{ d(x, y) \mid \langle \delta_y, T \delta_x \rangle \neq 0 \} = r < \infty$ Choose $F \subseteq S$ labeling all the *r*-paths in $\Lambda_S \rightsquigarrow$ for all $x, y \in S$ with d(x, y) < r there is $t_{x,y} \in F$ such that $t_{x,y}x = y$. Then

Finite labeling III: importance

Theorem (Lledó, M. - 2021)

 (S, \mathcal{K}) admits a finite labeling $\Leftrightarrow \mathcal{R}_S = \ell^{\infty}(S) \rtimes_r S = C_u^*(\Lambda_S).$

Proof ⇒: take $T \in C_u^*(\Lambda_S)$ such that prop $(T) = \sup \{ d(x, y) \mid \langle \delta_y, T \delta_x \rangle \neq 0 \} = r < \infty$ Choose $F \Subset S$ labeling all the *r*-paths in $\Lambda_S \rightsquigarrow$ for all $x, y \in S$ with d(x, y) < r there is $t_{x,y} \in F$ such that $t_{x,y}x = y$. Then $\mathcal{R}_S \ni \sum_{s \in F} \xi_s V_s = T$, where $\xi_s(y) = \begin{cases} \langle \delta_y, T \delta_{s^*y} \rangle & \text{if } s = t_{s^*y,y} \\ 0 & \text{otherwise} \end{cases}$

Finite labeling III: importance

Theorem (Lledó, M. - 2021)

 (S, \mathcal{K}) admits a finite labeling $\Leftrightarrow \mathcal{R}_{S} = \ell^{\infty}(S) \rtimes_{r} S = C_{u}^{*}(\Lambda_{S}).$

Proof ⇒: take $T \in C_u^*(\Lambda_S)$ such that prop $(T) = \sup \{ d(x, y) \mid \langle \delta_y, T\delta_x \rangle \neq 0 \} = r < \infty$ Choose $F \Subset S$ labeling all the *r*-paths in $\Lambda_S \rightsquigarrow$ for all $x, y \in S$ with d(x, y) < r there is $t_{x,y} \in F$ such that $t_{x,y}x = y$. Then $\mathcal{R}_S \ni \sum_{s \in F} \xi_s V_s = T$, where $\xi_s(y) = \begin{cases} \langle \delta_y, T\delta_{s^*y} \rangle & \text{if } s = t_{s^*y,y} \\ 0 & \text{otherwise} \end{cases}$

Remark: somehow, the Theorem says that if (S, K) is <u>not</u> FL then maybe change your generating set K...

Theorem (classical - for groups!) For arbitrary groups: $\mathcal{R}_G = \ell^{\infty}(G) \rtimes_r G = C_u^*(G)$.

3. Coarse geometry of an inverse semigroup

3.2. Domain-measurability as a coarse invariant

Domain-measurability in the Schützenberger graphs

Følner condition: $s(F_n \cap D_{s^*s}) \rightsquigarrow$ only moving in \mathcal{L} -classes.

Følner condition: $s(F_n \cap D_{s^*s}) \rightsquigarrow$ only moving in \mathcal{L} -classes.

Therefore:

Domain-measurable \Leftrightarrow Schützenberger graphs have *small growth*:

Proposition (Lledó, M. - 2021)

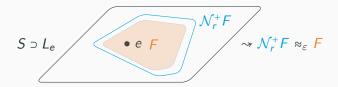
Suppose $S = \langle K \rangle$ admits a FL. S is domain-measurable iff for every $r, \varepsilon > 0$ there is $F \in S$ such that $|\mathcal{N}_r^+ F| \le (1 + \varepsilon) |F|$. Følner condition: $s(F_n \cap D_{s^*s}) \rightsquigarrow$ only moving in \mathcal{L} -classes.

Therefore:

Domain-measurable ⇔ Schützenberger graphs have *small growth*:

Proposition (Lledó, M. - 2021)

Suppose $S = \langle K \rangle$ admits a FL. S is domain-measurable iff for every $r, \varepsilon > 0$ there is $F \in S$ such that $|\mathcal{N}_r^+ F| \le (1 + \varepsilon) |F|$.



Quasi-isometric invariance of domain-measurability

Theorem (Lledó, M. - 2021)

Let S and T be quasi-isometric and admitting finite labelings.

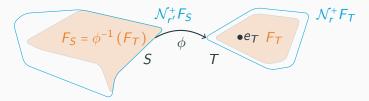
If T is domain-measurable then so is S.

Quasi-isometric invariance of domain-measurability

Theorem (Lledó, M. - 2021)

Let S and T be quasi-isometric and admitting finite labelings. If T is domain-measurable then so is S.

Proof:

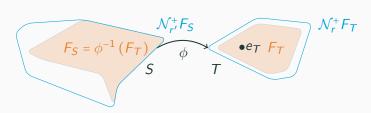


Quasi-isometric invariance of domain-measurability

Theorem (Lledó, M. - 2021)

Let S and T be quasi-isometric and admitting finite labelings. If T is domain-measurable then so is S.

Proof:



Remark: amenability is not a q.i. invariant:

•
$$S = \mathbb{F}_2 \sqcup \{0\}$$
 and $T = \mathbb{F}_2 \sqcup \{1\}$

• $\phi: S \to T$, where $\phi(\omega) = \omega$ and $\phi(0) = 1$ is a q.i.

3. Coarse geometry of an inverse semigroup

3.3. Property A as a C*-property

Schützenberger graphs and property A

Definition (Yu - 1999)

(X, d) has property A if for every $r, \varepsilon > 0$ there is $\xi: X \to \ell^{\overline{1}}(X)_{1}^{+}$ and c > 0 such that supp $(\xi_{x}) \subset B_{c}(x)$ and $||\xi_{x} - \xi_{y}||_{1} \le \varepsilon$ for every $x, y \in X$ such that $d(x, y) \le r$.

Schützenberger graphs and property A

Definition (Yu - 1999)

(X, d) has property A if for every $r, \varepsilon > 0$ there is $\xi: X \to \ell^{\overline{1}}(X)_{1}^{+}$ and c > 0 such that supp $(\xi_{x}) \subset B_{c}(x)$ and $||\xi_{x} - \xi_{y}||_{1} \le \varepsilon$ for every $x, y \in X$ such that $d(x, y) \le r$.

Remarks:

- Property A generalizes amenability for groups (not in general)
- Non-property A groups are hard to come by

Schützenberger graphs and property A

Definition (Yu - 1999)

(X, d) has property A if for every $r, \varepsilon > 0$ there is $\xi: X \to \ell^{\overline{1}}(X)_{1}^{+}$ and c > 0 such that supp $(\xi_{x}) \subset B_{c}(x)$ and $||\xi_{x} - \xi_{y}||_{1} \le \varepsilon$ for every $x, y \in X$ such that $d(x, y) \le r$.

Remarks:

- Property A generalizes amenability for groups (not in general)
- Non-property A groups are hard to come by

Theorem (Ozawa - 2000)

Let G be a countable group. The following are equivalent:

- (1) G has property A.
- (2) \mathcal{R}_G is a nuclear C*-algebra.
- (3) $C_r^*(G)$ is an exact C*-algebra.

Property A, nuclearity and exactness for inverse semigroups

Theorem (Lledó, M. - 2021)

Let $S = \langle K \rangle$. Consider:

Then $(1) \Rightarrow (2) \Rightarrow (3)$, and $(3) \Rightarrow (1)$ when (S, K) admits a FL.

Property A, nuclearity and exactness for inverse semigroups

Theorem (Lledó, M. - 2021) Let $S = \langle K \rangle$. Consider: (1) Λ_S has property A (as a graph). (2) \mathcal{R}_S is a nuclear C*-algebra. (3) $C_r^*(S)$ is an exact C*-algebra.

Then $(1) \Rightarrow (2) \Rightarrow (3)$, and $(3) \Rightarrow (1)$ when (S, K) admits a FL.

Proof:

- Usual arguments for $(1) \Rightarrow (2) \Rightarrow (3)$
- Nuclearity = exactness for $\mathcal{R}_S = C_u^*(\Lambda_S)$ [Sako 2021]

Property A, nuclearity and exactness for inverse semigroups

Theorem (Lledó, M. - 2021) Let $S = \langle K \rangle$. Consider: (1) Λ_S has property A (as a graph). (2) \mathcal{R}_S is a nuclear C*-algebra. (3) $C_r^*(S)$ is an exact C*-algebra.

Then $(1) \Rightarrow (2) \Rightarrow (3)$, and $(3) \Rightarrow (1)$ when (S, K) admits a FL.

Proof:

- Usual arguments for $(1) \Rightarrow (2) \Rightarrow (3)$
- Nuclearity = exactness for $\mathcal{R}_{S} = C_{u}^{*}(\Lambda_{S})$ [Sako 2021]

Remark: $(1) \Rightarrow (2) \rightsquigarrow$ nuclearity does not pass to sub-algebras!

4. The universal groupoid and its amenability

Paterson's universal groupoid and its amenability

Theorem (Paterson - 1999)

Given S there is $G_{\mathcal{U}}(S) = \{ \text{filters of } E(S) \} \rtimes_{\theta} S \text{ such that}$ $C_r^*(S) = C_r^*(G_{\mathcal{U}}(S)) \text{ and } C^*(S) = C^*(G_{\mathcal{U}}(S))$

Paterson's universal groupoid and its amenability

Theorem (Paterson - 1999)

Given S there is $G_{\mathcal{U}}(S) = \{ \text{filters of } E(S) \} \rtimes_{\theta} S$ such that $C_r^*(S) = C_r^*(G_{\mathcal{U}}(S))$ and $C^*(S) = C^*(G_{\mathcal{U}}(S))$

Recall: for arbitrary (discrete) groups:

G is amenable $\Leftrightarrow C_r^*(G)$ is nuclear $\Leftrightarrow C_r^*(G) = C^*(G)$ And this has become a driving force of groupoid amenability:

Theorem (Anantharaman-Delaroche and Renault) An (étale) groupoid \mathcal{G} is amenable $\Leftrightarrow C_r^*(\mathcal{G})$ is nuclear.

Paterson's universal groupoid and its amenability

Theorem (Paterson - 1999)

Given S there is $G_{\mathcal{U}}(S) = \{ \text{filters of } E(S) \} \rtimes_{\theta} S$ such that $C_r^*(S) = C_r^*(G_{\mathcal{U}}(S))$ and $C^*(S) = C^*(G_{\mathcal{U}}(S))$

Recall: for arbitrary (discrete) groups:

G is amenable $\Leftrightarrow C_r^*(G)$ is nuclear $\Leftrightarrow C_r^*(G) = C^*(G)$ And this has become a driving force of groupoid amenability:

Theorem (Anantharaman-Delaroche and Renault) An (étale) groupoid \mathcal{G} is amenable $\Leftrightarrow C_r^*(\mathcal{G})$ is nuclear.

Question:

- Relation between $G_{\mathcal{U}}(S)$ amenable and S amenable?
- How does $G_{\mathcal{U}}(S)$ enter the picture?

Short answer: no

Short answer: no relation, as

S amenable/domain-measurable → traces in R_S
 G_U(S) amenable → nuclearity of C^{*}_r(S) → nuclearity of R_S

Short answer: no relation, as

(1) *S* amenable/domain-measurable \sim traces in \mathcal{R}_S (2) $\mathcal{G}_{\mathcal{U}}(S)$ amenable \sim nuclearity of $\mathcal{C}_r^*(S) \sim$ nuclearity of \mathcal{R}_S

Examples:

(i) F₂ ⊔ {0} is amenable but non-nuclear reduced C*-algebra
(Can also be done with a *box space* with a prop. (T) group)
(ii) C^{*}_r (F₂ ⊔ {0}) ≠ C* (F₂ ⊔ {0})
(iii) Nica gave a non-amenable semigroup with nuclear C*-algebra

However, property A of $\Lambda_S \rightsquigarrow$ exactness of $C_r^*(S)$:

Proposition (Lledó, M. - 2021)

Let $S = \langle K \rangle$ with (S, K) admitting a finite labeling. If $G_{\mathcal{U}}(S)$ is amenable then Λ_S has property A.

28

However, property A of $\Lambda_S \rightsquigarrow$ exactness of $C_r^*(S)$:

Proposition (Lledó, M. - 2021)

Let $S = \langle K \rangle$ with (S, K) admitting a finite labeling. If $G_{\mathcal{U}}(S)$ is amenable then Λ_S has property A.

Proof: $G_{\mathcal{U}}(S)$ amenable $\Leftrightarrow C_r^*(S) = C_r^*(G_{\mathcal{U}}(S))$ nuclear $\Rightarrow C_r^*(S)$ exact $\Leftrightarrow \Lambda_S$ has prop. A However, property A of $\Lambda_S \rightsquigarrow$ exactness of $C_r^*(S)$:

Proposition (Lledó, M. - 2021)

Let $S = \langle K \rangle$ with (S, K) admitting a finite labeling. If $G_{\mathcal{U}}(S)$ is amenable then Λ_S has property A.

Proof: $G_{\mathcal{U}}(S)$ amenable $\Leftrightarrow C_r^*(S) = C_r^*(G_{\mathcal{U}}(S))$ nuclear $\Rightarrow C_r^*(S)$ exact $\Leftrightarrow \Lambda_S$ has prop. A

Remarks:

- Alternate argument via the definitions involved \sim not C*
- Is not an equivalence, as \mathbb{F}_2 has prop. A and is not amenable

5. Norm approximations and quasi-diagonality

From QD to domain-measurability

Definition/Theorem (Voiculescu, based on Halmos)

A C*-algebra A is <u>quasi-diagonal</u> if there are u.c.p. maps $\varphi_n: A \to M_{k(n)}$ such that for all $a, b \in A$

 $\|\varphi_n(ab) - \varphi_n(a)\varphi_n(b)\| \to 0 \text{ and } \|\varphi_n(a)\| \to \|a\|$

From QD to domain-measurability

Definition/Theorem (Voiculescu, based on Halmos)

A C*-algebra A is <u>quasi-diagonal</u> if there are u.c.p. maps $\varphi_n: A \to M_{k(n)}$ such that for all $a, b \in A$

 $\|\varphi_n(ab) - \varphi_n(a)\varphi_n(b)\| \to 0 \text{ and } \|\varphi_n(a)\| \to \|a\|$

Theorem (Ara, Lledó, M. - 2020)

If $C_r^*(S)$ is quasi-diagonal then S is domain-measurable. The reverse implication is false.

Sketch of proof:

As $\|\cdot\|_2 \leq \|\cdot\| \rightsquigarrow QD$ is stronger than the previous 2-approx.

 \sim dom. measurable = amenable trace = 2-norm approx.

(Any wk-* cluster point of $\{\operatorname{tr}_{k(n)} \circ \varphi_n\}_{n \in \mathbb{N}}$ gives a dom. measure)

From QD to domain-measurability

Definition/Theorem (Voiculescu, based on Halmos)

A C*-algebra A is <u>quasi-diagonal</u> if there are u.c.p. maps $\varphi_n: A \to M_{k(n)}$ such that for all $a, b \in A$

 $\|\varphi_n(ab) - \varphi_n(a)\varphi_n(b)\| \to 0 \text{ and } \|\varphi_n(a)\| \to \|a\|$

Theorem (Ara, Lledó, M. - 2020)

If $C_r^*(S)$ is quasi-diagonal then S is domain-measurable. The reverse implication is false.

Sketch of proof:

As $\|\cdot\|_2 \leq \|\cdot\| \rightsquigarrow QD$ is stronger than the previous 2-approx.

 \sim dom. measurable = amenable trace = 2-norm approx.

(Any wk-* cluster point of $\{\operatorname{tr}_{k(n)} \circ \varphi_n\}_{n \in \mathbb{N}}$ gives a dom. measure) Lastly, $\mathcal{B} = \langle a, a^* \mid a^*a = 1 \rangle$ is amenable but $V_{aa^*} \sim 1$ in $C_r^*(\mathcal{B})$

Goal: use algebraic properties of $S \sim$ prove quasi-diagonality. There currently are two strategies:

Goal: use algebraic properties of $S \sim$ prove quasi-diagonality. There currently are two strategies:

(TWW) Nuclearity + UCT + faithful trace $\Rightarrow C_r^*(S)$ is QD (Alt) Exploit the inner structure of S

Goal: use algebraic properties of $S \rightsquigarrow$ prove quasi-diagonality. There currently are two strategies:

(TWW) Nuclearity + UCT + faithful trace $\Rightarrow C_r^*(S)$ is QD (Alt) Exploit the inner structure of S

Unfortunately, (TWW) does not quite work in this context:

Proposition (M. - 2021)

Suppose $G_{\mathcal{U}}(S)$ is minimal and $C_r^*(S)$ stably finite. If S is not a group then S is isomorphic to $E \times H \times E \sqcup \{0\}$, where $E := E(S) \setminus \{0\}$ and H is a group.

Goal: use algebraic properties of $S \rightsquigarrow$ prove quasi-diagonality. There currently are two strategies:

(TWW) Nuclearity + UCT + faithful trace $\Rightarrow C_r^*(S)$ is QD (Alt) Exploit the inner structure of S

Unfortunately, (TWW) does not quite work in this context:

Proposition (M. - 2021)

Suppose $G_{\mathcal{U}}(S)$ is minimal and $C_r^*(S)$ stably finite. If S is not a group then S is isomorphic to $E \times H \times E \sqcup \{0\}$, where $E := E(S) \setminus \{0\}$ and H is a group.

Remarks:

- Minimality is needed to guarantee faithfulness of the trace.
- Stable finiteness follows from quasi-diagonality.

Using \mathcal{D} -classes to prove quasi-diagonality

Theorem (M. - 2021)

Suppose that:

(1) No \mathcal{D} -class in S has infinitely many projections

(2) All the subgroups of S are amenable

Then $C_r^*(S)$ is quasi-diagonal.

Using \mathcal{D} -classes to prove quasi-diagonality

Theorem (M. - 2021)

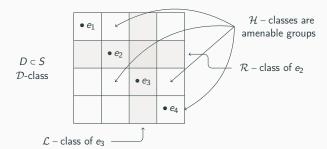
Suppose that:

(1) No \mathcal{D} -class in S has infinitely many projections

(2) All the subgroups of S are amenable

Then $C_r^*(S)$ is quasi-diagonal.

Very sketchy sketch of proof:



Using \mathcal{D} -classes to prove quasi-diagonality

Theorem (M. - 2021)

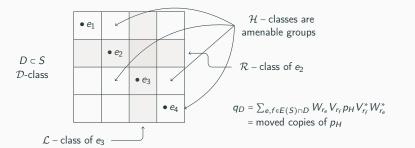
Suppose that:

(1) No \mathcal{D} -class in S has infinitely many projections

(2) All the subgroups of S are amenable

Then $C_r^*(S)$ is quasi-diagonal.

Very sketchy sketch of proof:



6. Summary and future work

Day's amenability:

- Split into dom.-measurable + localization ~ forward dynamics.
- Dom.-measurable ~> adequate Følner and paradoxicality.
- These measures characterize the (amenable) traces of \mathcal{R}_S .

Day's amenability:

- Split into dom.-measurable + localization ~ forward dynamics.
- Dom.-measurable ~ adequate Følner and paradoxicality.
- These measures characterize the (amenable) traces of \mathcal{R}_S .

Schützenberger graphs:

- Equipped S with a proper and right invariant metric
 → distinguishes L-classes, but does not implement ≥
- Viewed *R_S* as a crossed product and *C^{*}_u*(Λ_S)
 → modulo finite labelings (automatic for groups)
- Studied Følner sets geometrically, and prop. A in \mathcal{R}_S .

Day's amenability:

- Split into dom.-measurable + localization ~ forward dynamics.
- Dom.-measurable ~ adequate Følner and paradoxicality.
- These measures characterize the (amenable) traces of \mathcal{R}_S .

Schützenberger graphs:

- Equipped S with a proper and right invariant metric
 → distinguishes L-classes, but does not implement ≥
- Viewed *R_S* as a crossed product and *C^{*}_u*(Λ_S)
 → modulo finite labelings (automatic for groups)
- Studied Følner sets geometrically, and prop. A in \mathcal{R}_S .

Groupoids, quasi-diagonality and related notions:

- Related this study with groupoid amenability
- Upgraded 2-norm approx. → norm-approx. (in some cases)

Future work

About metrics and property A:

- Unique proper and right invariant metric? Role of the finite labelings? Do these appear?
- Semigroups without property A ~ *natural* examples?
- Reproduce non-A metric spaces with semigroups.

Future work

About metrics and property A:

- Unique proper and right invariant metric? Role of the finite labelings? Do these appear?
- Semigroups without property A ~ *natural* examples?
- Reproduce non-A metric spaces with semigroups.

Quasi-diagonality and norm approximations:

- Characterize quasi-diagonality of C^{*}_r(S) in terms of S.
 Role of the UCT? Traces? Nuclearity (or exactness)?
- \bullet Exploit decomposition into $\mathcal D\text{-}classes$ and $\mathcal H\text{-}classes.$
- For groups, compute explicit quasi-diagonal approximation.

Future work

About metrics and property A:

- Unique proper and right invariant metric? Role of the finite labelings? Do these appear?
- Semigroups without property A ~ *natural* examples?
- Reproduce non-A metric spaces with semigroups.

Quasi-diagonality and norm approximations:

- Characterize quasi-diagonality of C^{*}_r(S) in terms of S.
 Role of the UCT? Traces? Nuclearity (or exactness)?
- \bullet Exploit decomposition into $\mathcal D\text{-}classes$ and $\mathcal H\text{-}classes.$
- For groups, compute explicit quasi-diagonal approximation.

Interesting C*-algebras and their semigroup counterparts:

- Study the coarse geometry of AF-monoids. Classifiable ones?
- Inverse semigroup equivalent of \mathcal{Z} .

- F. Lledó and D. Martínez, Notions of infinity in quantum physics, 60 Years Alberto Ibort Fest Classical and Quantum Physics, Chapter 14, Springer (2019) (pp. 14) https://doi.org/10.1007/978-3-030-24748-5 14
- P. Ara, F. Lledó and D. Martínez, Amenability and paradoxicality in semigroups and C*-algebras, J. Func. Anal. 279 (2020) 108530 (pp. 43) https://doi.org/10.1016/j.jfa.2020.108530
- F. Lledó and D. Martínez, *The uniform Roe algebra of an inverse semigroup*, J. Math. Anal. Appl. **499** (2021) 124996 (pp. 28) https://doi.org/10.1016/j.jmaa.2021.124996
- [4] D. Martínez, Quasi-diagonality for reduced inverse semigroup C*-algebras, in preparation (2021)

Thank you for your attention. Questions?

7. Some extra slides

Semigroups and Day's amenability

S semigroup \rightsquigarrow binary and associative operation $(s, t) \mapsto st$ Key idea: multiplication is <u>not</u> injective... maybe \nexists inverse s^{-1}

$$s^{-1}A \coloneqq \{x \in S \mid sx \in A\} \rightsquigarrow ss^{-1}A \subsetneq A \subsetneq s^{-1}s A$$

Definition (Day 1957)

S is <u>amenable</u> if there is a prob. measure μ : $\mathcal{P}(S) \rightarrow [0,1]$ such that $\mu(s^{-1}A) = \mu(A)$ for every s ∈ S and A ⊂ S

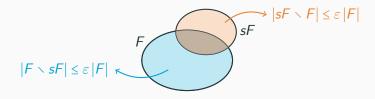
Examples:

- All amenable groups.
- $0 \in S \rightsquigarrow \mu(\{0\}) = 1.$
- $\mathbb{F}_2 \sqcup \{1\}$ is not amenable.
- $S := \{a, b\}$ where ab = aa = a and ba = bb = b is <u>not</u> amenable.

Questions: Følner condition? Paradoxical characterization?

Classical equivalences in semigroups

Note we have a choice to make:



- In general $|sF| \leq |F|$
- $|sF \setminus F| \le |F \setminus sF|$, and equality when |sF| = |F|
- Warning: |sF| small, and $sF \cap F = \emptyset \Rightarrow |sF \setminus F|$ small
- (1) S satisfies the <u>Følner condition</u> if for every $\varepsilon > 0$ and $K \subseteq S$ there is $F \subseteq S$ such that $|sF \setminus F| \le \varepsilon |F|$ for every $s \in K$
- (2) S satisfies the <u>strong Følner condition</u> if for every $\varepsilon > 0$ and $K \subseteq S$ there is $F \subseteq S$ such that $|F \setminus sF| \le \varepsilon |F|$ for every $s \in K$

Amenable, Følner and algebraic amenability

Theorem (many hands)

Let S be a semigroup. Consider:

- (1) S has a strong Følner sequence
- (2) S is amenable
- (3) S has a Følner sequence

(4) $\mathbb{C}S$ is algebraically amenable

Then $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$

Proof: (1) \Rightarrow (2): $\mu(A) = \lim_{\omega} |A \cap F_n| / |F_n|$

(2) \Rightarrow (3): Namioka 1964, based on Følner 1957

(3) \Rightarrow (4): $\{F_n\}_{n \in \mathbb{N}}$ is a Følner sequence then

$$\frac{\dim (s \mathbb{C}F_n + \mathbb{C}F_n)}{\dim (\mathbb{C}F_n)} \leq \frac{\dim (\mathbb{C}(s F_n \cup F_n))}{\dim (\mathbb{C}F_n)} = \frac{|s F_n \cup F_n|}{|F_n|} \xrightarrow{n \to \infty} 1$$

Reversing the classical equivalences

Remark: none of the reverse implications hold.

 $(2) \neq (1)$: Klawe 1977 \sim right cancellative amenable semigroup not strong Følner nor left cancellative

(3) \Rightarrow (2): as $S = \{a, b\}$ is:

- Finite $\rightsquigarrow F := S$ is a nice Følner set
- Not amenable: $\mu(\{a\}) = \mu(b^{-1}\{a\}) = 0 = \mu(a^{-1}\{b\}) = \mu(\{b\})$

(4) \Rightarrow (3): a bit more involved...

Example (Ara, Lledó, M. - 2020)

Consider $\mathbb{F}_2^+ = \langle a, b \rangle \subset \mathbb{F}_2$, and

$$\alpha: \mathbb{F}_{2}^{+} \to \operatorname{End}(\mathbb{N}), \ \alpha_{a}(n) = \alpha_{b}(n) = \begin{cases} n-1 & \text{if } n \ge 1 \\ 0 & \text{if } n = 0 \end{cases}$$

Then $\mathbb{N} \rtimes_{\alpha} \mathbb{F}_2^+$ is algebraically amenable but not Følner.

An argument for and against injectivity

All of the above differences boil down to $|F| \neq |sF|$

Definition: S is (left) cancellative if sx = sy then x = y

Nice behavior with cancellation:

- $A = s^{-1}sA$
- |F| = |sF|, and hence
- Strong Følner \Leftrightarrow amenable \Leftrightarrow Følner

Naughty behavior with cancellation:

- $ss^{-1}A \subsetneq A$
- Not a clear candidate for *paradoxicality*, as

 ‡ t ∈ S such that t⁻¹s⁻¹A = A → S lacks the inverse of s

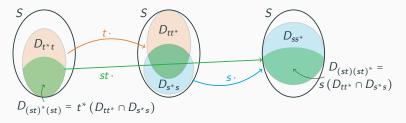
Solution: having sets $D_{s,i} \subset S$ such that $s: D_{s,1} \to D_{s,2}$ is bijective, and do everything up to these *domains*

Inverse semigroups and Wagner-Preston

Recall that the *Wagner-Preston* representation $v: S \rightarrow \mathcal{I}(S)$ is

•
$$D_{s^*s} := \{x \in S \mid x = s^*sx\} = s^*s \cdot S$$
 is the domain of s^*s

•
$$s: D_{s^*s} \to D_{ss^*}$$
, where $x \mapsto sx$



This idea can be taken a bit further:

Definition (Sieben - 1997)

A <u>representation</u> of S on the discrete set X is a homomorphism $\alpha: S \to \mathcal{I}(X)$, where $s \mapsto (\alpha_s: D_{s^*s} \to D_{ss^*})$

Representations - and one example to contain them all

Recall: $\mathcal{I}(X) = \{(t, A, B) \mid A, B \subset X \text{ and } t: A \mapsto B \text{ is a bijection}\}$

- In particular $\mathcal{I}\left(\mathbb{N}\right)$ contains every countable inverse semigroup
- $\frac{\text{bijections}}{\text{groups}} = \frac{\text{partial bijections}}{\text{inv. semigroups}}$
- Idempotents $e \in E(S) \rightsquigarrow$ subsets of X

Remark: recall that if S = G is a group then

$$\{ \text{actions } \alpha : G \to \text{Perm} (X) \} \leftrightarrow \{ \text{congruences in } G \}$$
$$\leftrightarrow \{ \text{normal subgroups } N \subset G \}$$

However, $\alpha: S \to \mathcal{I}(X)$ induces only a congruence on S

Warning: no clear notion of *normal sub-semigroup* → no obvious description of {congruences on S}

The type semigroup

Given $\alpha: S \to \mathcal{I}(X)$ consider the commutative monoid Typ $(\alpha) := \langle [A]$ where $A \subset X \rangle$ subject to (i) $[\emptyset] = 0$ (ii) $[A] = [\alpha_s(A)]$ whenever $A \subset D_{s^*s}$ (iii) $[A \cup B] = [A] + [B]$ if $A \cap B = \emptyset$ Lastly, $\alpha, \beta \in \text{Typ}(\alpha)$ then $\alpha \leq \beta$ if $\alpha + \gamma = \beta$ for some $\gamma \in \text{Typ}(\alpha)$ Lemma (Ara, Lledó, M. - 2020) Let Typ (α) be as above, and let [A], [B] \in Typ (α). Then (1) If $[A] \leq [B]$ and $[B] \leq [A]$ then [A] = [B](2) If $n \cdot [A] = n \cdot [B]$ for any $n \in \mathbb{N}$ then [A] = [B](3) If $(n+1) \cdot [A] \leq n \cdot [A]$ for some $n \in \mathbb{N}$ then $[A] = 2 \cdot [A]$

Classical equivalences renovated I

Theorem (Ara, Lledó, M. - 2020)

Let $\alpha: S \to \mathcal{I}(X)$ be an inverse semigroup. TFAE:

- (1) X is domain-measurable.
- (2) X is not paradoxical.
- (3) X is domain-Følner.

 $(1) \Rightarrow (3)$: follow the algorithm:

- $m(p_B) \coloneqq \mu(B)$ + extend by lineary and continuity
- $m \in (\ell^{\infty}(X))^{*}$ is a normalized functional
- Recall: {normal states} $\subset (\ell^{\infty}(X))^{*}$ are dense (weak-*)

Approximating m by normal states, and applying Namioka's trick

 $\rightsquigarrow h_{\lambda} \in \ell^1(X)_1^+$ such that $\|s^*h_{\lambda} - s^*sh_{\lambda}\|_1 \to 0$

Some *inner level set* of h_{λ} is a good enough Følner set.

Classical equivalences renovated II

$$\underbrace{(1) \Rightarrow (2):}_{2 = \sum_{i=1}^{n} \mu\left(s_{i}A_{i}\right) + \sum_{j=1}^{m} \mu\left(t_{j}B_{j}\right) = \sum_{i=1}^{n} \mu\left(A_{i}\right) + \sum_{j=1}^{m} \mu\left(B_{j}\right) }_{= \mu\left(A_{1} \sqcup \cdots \sqcup A_{n} \sqcup B_{1} \sqcup \cdots \sqcup B_{m}\right) \le \mu\left(X\right) = 1 }$$

 $\underbrace{(2) \Rightarrow (1):}_{(n+1) \cdot [X] \notin [X]} \text{ in Typ } (\alpha), \text{ and by the Lemma}$

Theorem (Tarski - 1929)

Let $(\mathcal{T}, +)$ be a commutative monoid, with neutral element and $\epsilon \in \mathcal{T}$. The following are equivalent:

(a) $(n+1) \cdot \epsilon \nleq n \cdot \epsilon$ for any $n \in \mathbb{N}$ (b) There is a homo. $\nu: \mathcal{T} \to [0, \infty]$ with $\nu(\epsilon) = 1$

Hence there is a homomorphism ν : Typ $(\alpha) \rightarrow [0, \infty]$ with $\nu([X]) = 1$. Then $\mu(B) \coloneqq \nu([B])$ is a domain-measure.

The localization already appeared in previous work:

Theorem (Gray, Kambites - 2017) Let S be a semigroup satisfying the Klawe condition. Then S is amenable \Leftrightarrow there are $F_n \subset S$ such that $|sF_n \setminus F_n| / |F_n| \to 0$ and $|sF_n| = |F_n|$

 F_n can be found where s acts injectively $\sim D_{s^*s}$

Indeed: if $\alpha = v: S \to \mathcal{I}(S)$, and S is amenable when F_n is eventually within $D_{s^*s} \rightsquigarrow F_n \subset D_{s^*s} \Rightarrow |F_n| = |sF_n|$

Wagner-Preston case, or when X = S

Before: what happens when X = S and $\alpha = v: S \rightarrow \mathcal{I}(S)$?

Consider the *action* of S given by:

- $E_{s^*s} = \{f \in \ell^\infty(S) \mid \operatorname{supp}(f) \subset D_{s^*s}\}$
- For any $f \in E_{s^*s}$ consider $(sf)(x) \coloneqq f(s^*x)$ when $x \in D_{ss^*}$

And construct $\ell^{\infty}(S) \rtimes_{r} S \subset \mathcal{B}\left(\ell^{2}S \otimes \ell^{2}S\right)$

Proposition (Ara, Lledó, M. - 2020)

With the above notation: $\mathcal{R}_{S} \cong \ell^{\infty}(S) \rtimes_{r} S$

Proof: check that $U(\ell^{\infty}(S) \rtimes_{r} S) U^{*} \cong 1 \otimes \mathcal{R}_{S} \cong \mathcal{R}_{s}$, where

$$U: \ell^2 S \otimes \ell^2 S \to \ell^2 S \otimes \ell^2 S, \ \delta_x \otimes \delta_y \mapsto \begin{cases} \delta_x \otimes \delta_{yx} & \text{if } xx^* = y^*y \\ 0 & \text{otherwise} \end{cases}$$

All the traces of \mathcal{R}_S are amenable

Theorem (Ara, Lledó, M. - 2020)

There is a bijection between the domain-measures on X and the traces of \mathcal{R}_X . In particular, all the traces of \mathcal{R}_X are amenable.

Proof: the map
$$\mu \mapsto \tau : \mathcal{B}(\ell^2 X) \xrightarrow{\mathcal{E}} \ell^{\infty}(X) \xrightarrow{m} \mathbb{C}$$
 is a bijection:
 $\rightarrow \tau$ is a trace (see above Theorem)
 \rightarrow The map is bijective since:
Lemma (Ara, Lledó, M. - 2020)
All traces of \mathcal{R}_S factor under \mathcal{E} , and hence $m = \mathcal{E} \circ \tau$ is a mean.

Key point: if
$$sx \neq x$$
 for all $x \in A \subset D_{s^*s}$ it can be 3-colored, i.e.,
 $A = B_1 \sqcup B_2 \sqcup B_3$ where $sB_i \cap B_i = \emptyset$. Hence for every trace φ
 $\varphi(V_s p_A) = \varphi(V_s p_{B_1}) + \varphi(V_s p_{B_2}) + \varphi(V_s p_{B_3})$
 $= \varphi(p_{B_1}V_s p_{B_1}) + \varphi(p_{B_2}V_s p_{B_2}) + \varphi(p_{B_3}V_s p_{B_3}) = 0$

Property A and nuclearity of \mathcal{R}_S

Theorem (Lledó, M. - 2021)

If Λ_S has property A (as a graph) then \mathcal{R}_S is nuclear.

Note: this is based on a similar result for \mathcal{L} -classes:

Proof: given a $\xi: X \to \ell^1(X)_1^+$ and c > 0 consider

$$\varphi: \mathcal{R}_{S} \to \prod_{x \in S} M_{B_{c}(x)} \subset \ell^{\infty}(S) \otimes M_{k}, \text{ where } a \mapsto \left(p_{B_{c}(x)} a p_{B_{c}(x)}\right)_{x \in S}$$

and

$$\psi: \ell^{\infty}(S) \otimes M_k \to \mathcal{R}_S, \text{ where } (b_x)_{x \in S} \mapsto \sum_{x \in S} \xi_x^* b_x \xi_x$$

with $\xi_x \delta_y \coloneqq \xi_y(x) \delta_y$ gives a c.p.c. approximation of \mathcal{R}_S :

- Both φ and ψ are completely positive
- $\|fV_{s} \psi(\varphi(fV_{s}))\| \leq \|fV_{s}\| \cdot \sup_{y \in D_{s^{*}s}} |1 \langle \xi_{sy}, \xi_{y} \rangle| \leq \varepsilon$

E-unitary semigroups and relation with property A

Recall: $G(S) = S/\sigma$, where $s\sigma t$ iff se = te for some $e \in E(S)$

- Known as the maximal homomorphic image of S
- G(S) is always a group, and let $\sigma: S \to G(S)$ the quotient map

Theorem (Duncan and Namioka - 1978) S is amenable if, and only if, G(S) is amenable.

However: G(S) loses information of $S \rightsquigarrow might even G(S) = \{1\}$

Definition (classical)

S is *E*-unitary if $\sigma: S \to G(S)$ is injective in every \mathcal{L} -class.

Theorem (Anantharaman-Delaroche - 2016) Let S be E-unitary. $C_r^*(S)$ is exact $\Leftrightarrow G(S)$ is exact.

E-unitary semigroups and relation with property A

Goal: prove Anantharaman-Delaroche's result geometrically **Theorem (Lledó, M. - 2021)** Let $S = \langle K \rangle$ be E-unitary and (S, K) admit a finite labeling. Λ_S has property $A \Leftrightarrow G(S)$ has property A.

(Recall that, by Ozawa, property A = exactness for groups) **Proof** \Rightarrow : given $\xi: S \to \ell^1(S)^1_+$ for S let $\zeta: G(S) \to \ell^1(G(S))$, where $\zeta_{\sigma(s)}(\sigma(t)) \coloneqq \lim_{n \to \omega} \xi_{se_n}(te_n)$

for some $e_1 \geq \cdots \geq e_n \geq \cdots \in E(S)$ is eventually below everything

- Locally G(S) is Λ_{L_e} for *e* sufficiently small
- Hence, the same approx. for Λ_S does the trick for G(S)

Proof ⇐: only known via C*-arguments

Higson-Lafforgue-Skandalis and Willett's example

Example: box space without property A

- $\mathbb{F}_2 = \langle a, b \mid \rangle$ free non-abelian group on 2 elements
- Let $\{N_k\}_{k \in \mathbb{N}}$ be a descending sequence of normal subgroups of finite index such that $\cap_{k \in \mathbb{N}} N_k = \{1\}$
- $S := \bigsqcup_{k \in \mathbb{N}} \mathbb{F}_2 / N_k$, where $[g]_i \cdot [h]_j := [gh]_{\min\{i,j\}}$.

Remark:

- (1) S is amenable \rightsquigarrow as it has a 0
- (2) S does not have property A $\sim \mathcal{L}$ -classes are complicated
- (3) S does not admit a finite labeling \rightsquigarrow same as (\mathbb{N} , min)

Recall the construction of *Paterson's universal groupoid* $G_{\mathcal{U}}(S)$:

- Unit space $G_{\mathcal{U}}(S)^{(0)} \coloneqq \{\xi \in E(S) \text{ filter }\} \in \{0,1\}^{E(S)}$
- Action of S: $\theta_s: D_{s^*s}^{\theta} \to D_{ss^*}^{\theta}$, $\theta_s(\xi) = \{e \ge sfs^*\}_{f \in \xi}$
- Groupoid $G_{\mathcal{U}}(S) = \{[s,\xi] \text{ where } s \in S \text{ and } \xi \in D_{s^*s}^{\theta}\}$ Subject to some germ-like equivalence relation...
- Operation: $[t, \theta_s(\xi)] \cdot [s, \xi] = [ts, \xi]$

Example: $\mathcal{B} = \langle a, a^* \mid a^*a = 1 \rangle$ then

- $G_{\mathcal{U}}(\mathcal{B})^{(0)} = E(S) \sqcup \{\infty\} = \mathbb{N} \sqcup \{\infty\}$
- $G_{\mathcal{U}}(\mathcal{B})_k = \{[s,k]\}_{s^* s \ge a^k a^{*k}} = \{[a^i a^{*j},k]\}_{j \le k}$
- $G_{\mathcal{U}}(\mathcal{B})_{\infty} = \mathbb{Z}$

Groupoid amenability, nuclearity and weak containment

Theorem (Lance '70s, for groups!)

G is amenable $\Leftrightarrow C_{r}^{*}(G)$ is nuclear $\Leftrightarrow C_{r}^{*}(G) = C^{*}(G)$

This has become a driving force of groupoid amenability:

Definition (Renault - 1980)

G (étale) is <u>amenable</u> if for any $\varepsilon > 0$ and compact $K \subset G$ there is a cont. compc. supported $\eta: G \to [0,1]$ such that for all $s \in K$ $\left|1 - \sum_{s(h)=r(g)} \eta(h)\right| \le \varepsilon$ and $\sum_{s(h)=r(g)} |\eta(h) - \eta(hg)| \le \varepsilon$

Question:

- Relation between $G_{\mathcal{U}}(S)$ amenable and S amenable?
- How does $G_{\mathcal{U}}(S)$ enter the picture?

Question: relation between $G_{\mathcal{U}}(S)$ amenable and S amenable?

Short answer: no relation, as

(1) *S* amenable/domain-measurable \sim traces in \mathcal{R}_S (2) $\mathcal{G}_{\mathcal{U}}(S)$ amenable \sim nuclearity of $\mathcal{C}_r^*(S) \sim$ nuclearity of \mathcal{R}_S

Examples:

(i) F₂ ⊔ {0} is amenable but non-nuclear reduced C*-algebra
(Can also be done with a *box space* with a prop. (T) group)
(ii) C^{*}_r (F₂ ⊔ {0}) ≠ C* (F₂ ⊔ {0})
(iii) Nica gave a non-amenable semigroup with nuclear C*-algebra