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1. Main schemes and questions



Pyramid schemes and paradoxical behaviors

Do Ponzi schemes exist?

• P asks A and B , these give P 1$; and so on; and on...
• Everybody gains money in a finite time by moving it around
• Needs infinitely many people in a certain form:
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Groups: von Neuman, Tarski and Følner

Let G be a countable and discrete group:

• G is amenable if there is a prob. measure µ∶G → [0,1]
such that µ(g−1A) = µ(A) for all g ∈ G and A ⊂ G

• G satisfies the Følner condition if for every ε > 0 and K ⋐ G

there is F ⋐ G such that ∣KF ∪ F ∣ ≤ (1 + ε)∣F ∣
• G is paradoxical if there are Ai ,Bj ⊂ G and ai ,bj ∈ G with

G = ⊔ni=1aiAi = ⊔mj=1bjBj ⊃ (⊔ni=1Ai) ⊔ (⊔mj=1Bj)

Theorem (von Neumann 1927, Tarski 1929, Følner 1956)
G is amenable ⇔ G satisfies the Følner condition

⇔ G is not paradoxical

We call these equivalences classical

First goal: extend these to inverse semigroups

4
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2. Inverse semigroups and Day’s
amenability



Inverse semigroups and Wagner-Preston

Definition (Wagner 1952 and Preston 1954)
S is an inverse semigroup if for every s ∈ S there is a unique s∗ ∈ S

such that ss∗s = s and s∗ss∗ = s∗

Remarks:
• Bicyclic monoid: B = ⟨a, a∗ ∣ a∗a = 1⟩ = {aia∗j ∣ i , j ≥ 0}
• E(S) = {e ∈ S ∣ e2 = e} = {s∗s ∣ s ∈ S} is commutative
• Ds∗s ∶= {x ∈ S ∣ x = s∗sx} = s∗s ⋅ S is the domain of s∗s
• s ∶Ds∗s → Dss∗ , where x ↦ sx is a bijection

Induces the Wagner-Preston representation v ∶S → I (S):
S S

Dt∗t

Dtt∗t ⋅

Ds∗s

S

Dss∗

s ⋅

D(st)∗(st) = t∗ (Dtt∗ ∩Ds∗s)

D(st)(st)∗ =
s (Dtt∗ ∩Ds∗s)

st ⋅

5
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Day’s amenability

Key idea: multiplication is not injective
s∗ is only the inverse of s up to s∗s ↝ local inverse

s−1A ∶= {x ∈ S ∣ sx ∈ A} = pre-image of A

Definition (Day - 1957, for general semigroups)

S is amenable if there is a prob. measure µ∶ P (S) → [0,1]
such that µ (s−1A) = µ (A) for every s ∈ S and A ⊂ S

Examples: amenable groups, and

• 0 ∈ S ↝ µ ({0}) = 1.
• F2 ⊔ {1} is not amenable.

Remarks:

• Day follows closely von Neumann’s steps
• This definition is irksome, as it involves pre-images
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2. Inverse semigroups and Day’s
amenability

2.1. Day’s amenability split



Day’s amenability framed in the inverse case

Pick S and µ invariant measure (µ (A) = µ (s−1A)). Then:

(1) µ (B) = µ (B ∩Dss∗)+
(2) If A ⊂ Dss∗ then

Theorem (Ara, Lledó, M. - 2020)
µ is invariant ⇔ both following conditions are satisfied:

(1) Localization: µ (B) = µ (B ∩Ds∗s) for all s ∈ S ,B ⊂ S .

(2) Domain-measure: µ (A) = µ (sA) for all A ⊂ Ds∗s .
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Domain-measurable semigroups

Examples of domain-measurable semigroups:

• All amenable semigroups.
• Non-ame. & domain-measurable: S = F2 ⊔ {1} and µ = δ1.

Localization and domain-measurability explanation:

S S

Ds∗s Dss∗

s ⋅
B

↝ (1) µ (B) = µ (B ∩Ds∗s)
= µ (B ∩Dss∗)

A
sA ↝ (2) µ (A) = µ (sA)

8
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2. Inverse semigroups and Day’s
amenability

2.2. Paradoxicality and Følner’s condition



Paradoxicality and Følner’s condition

Følner & paradoxicality ↝ from a domain point of view

Definition (Ara, Lledó, M. - 2020)
Let S be a (countable) inverse semigroup.

(1) S is domain-Følner if there are Fn ⋐ S such that
∣s (Fn ∩Ds∗s) ∪ Fn∣ / ∣Fn∣ → 1 for every s ∈ S

(2) S is paradoxical if ∃si , tj ∈ S , Ai ⊂ Ds∗i si
and Bj ⊂ Dt∗j tj

with
S = s1A1 ⊔ ⋅ ⋅ ⋅ ⊔ snAn = t1B1 ⊔ ⋅ ⋅ ⋅ ⊔ tmBm

⊃ A1 ⊔ ⋅ ⋅ ⋅ ⊔An ⊔B1 ⊔ ⋅ ⋅ ⋅ ⊔Bm

Remarks: Note that if F ∩Ds∗s = ∅ then ∣s (F ∩Ds∗s) ∪ F ∣ = ∣F ∣
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Følner & paradoxicality ↝ from a domain point of view

Definition (Ara, Lledó, M. - 2020)
Let S be a (countable) inverse semigroup.

(1) S is domain-Følner if there are Fn ⋐ S such that
∣s (Fn ∩Ds∗s) ∪ Fn∣ / ∣Fn∣ → 1 for every s ∈ S

(2) S is paradoxical if ∃si , tj ∈ S , Ai ⊂ Ds∗i si
and Bj ⊂ Dt∗j tj

with
S = s1A1 ⊔ ⋅ ⋅ ⋅ ⊔ snAn = t1B1 ⊔ ⋅ ⋅ ⋅ ⊔ tmBm
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Classical equivalences renovated

Theorem (Ara, Lledó, M. - 2020)
Let S be an inverse semigroup. The following are equivalent:

(1) S is domain-measurable.
(2) S is not paradoxical.
(3) S is domain-Følner.

(3) ⇒ (1): consider µ (A) ∶= limn→ω ∣A ∩ Fn∣ / ∣Fn∣. If B ⊂ Ds∗s then
∣B ∩ Fn∣ = ∣s (B ∩ Fn)∣ ≤ ∣sB ∩ Fn∣ + ∣s (Fn ∩Ds∗s) ∖ Fn∣,

and hence, µ (B) ≤ µ (sB) (the other ineq. follows similarly)

(1) ⇒ (2): Par. decompostion + dom. measure ↝ Cont. 2 ≤ 1

(2) ⇒ (1): based on constructing a type semigroup Typ (S),
i.e., a commutative monoid that encapsulates when

µ (A) = µ (B) for A,B ⊂ S
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Role of the localization

Recall: Day’s amenable ⇔ localized + dom. measurable

Theorem (Ara, Lledó, M. - 2020)
An inverse semigroup S is amenable iff there are Fn ⋐ S such that

eventually Fn ⊂ Ds∗s and ∣sFn ∪ Fn∣ / ∣Fn∣ → 1 for all s ∈ S

Example: the bicyclic monoid B = ⟨a, a∗ ∣ a∗a = 1⟩

1 a∗ a∗2 a∗3

a aa∗ aa∗2 aa∗3

a2

a3

a2a∗

a3a∗

a2a∗2 a2a∗3

a3a∗2 a3a∗3

⋮ ⋮ ⋮ ⋮

. . .

. . .

. . .

. . .

⋰

B = D1

1 a∗ a∗2 a∗3

a aa∗ aa∗2 aa∗3

a2

a3

a2a∗

a3a∗

a2a∗2 a2a∗3

a3a∗2 a3a∗3

⋮ ⋮ ⋮ ⋮

. . .

. . .

. . .

. . .

⋰
Daa∗

1 a∗ a∗2 a∗3

a aa∗ aa∗2 aa∗3

a2

a3

a2a∗

a3a∗

a2a∗2 a2a∗3

a3a∗2 a3a∗3

⋮ ⋮ ⋮ ⋮

. . .

. . .

. . .

. . .

⋰F1

1 a∗ a∗2 a∗3

a aa∗ aa∗2 aa∗3

a2

a3

a2a∗

a3a∗

a2a∗2 a2a∗3

a3a∗2 a3a∗3
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2. Inverse semigroups and Day’s
amenability

2.3. 2-norm approximations and amenable
traces



Left regular representation and the uniform Roe algebra

Goal: use the Følner-type approx. to get approx. of RS

↝ approximate the traces of RS and study them

The left regular representation of S is:

V ∶S → B(`2S) , Vsδx ∶=
⎧⎪⎪⎨⎪⎪⎩

δsx if x ∈ Ds∗s

0 otherwise

Moreover `∞ (S) ⊂ B (`2S) as diagonal operators, and

RS ∶= C∗ ({fVs ∣ f ∈ `∞ (S) and s ∈ S}) ⊂ B (`2S) .

Theorem (classical - for groups!)

For arbitrary groups: RG = `∞ (G) ⋊r G = C∗
u (G).

Proposition (Lledó, M. - 2021)

One can give S ↷ `∞ (S) such that RS ≅ `∞ (S) ⋊r S .
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2-norm approximations and amenable traces

Theorem (Ara, Lledó, M. - 2020)
The following (among others) are equivalent:

(1) S is domain-measurable. (2) S is not paradoxical.
(3) RS has an amenable trace. (4) RS is not properly infinite.

(1) ⇒ (3): the functional τ ∶ B (`2S) EÐ→ `∞ (S) mÐ→ C, where

• m (pB) = µ (B) and extended linearly
• E∶B (`2S) → `∞ (S), where a ↦ ∑x∈S⟨δx , aδx⟩

is an amenable trace: τ (VsT ) = τ (TVs) for every T ∈ B (`2S)

Theorem (Ara, Lledó, M. - 2020)
There is a bijection between the domain-measures of S and the
traces of RS . In particular, all the traces of RS are amenable.
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3. Coarse geometry of an inverse
semigroup



Crash course on coarse geometry

Coarse idea: study metric spaces globally instead of locally

Example (finite objects seen coarsely)

(X ,d) is quasi-isometric to a point ⇔ supx ,x ′∈X d (x , x ′) < ∞.

Proof:

14
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Group coarse geometry

Recall: Cayley graph construction ↝ G = ⟨g±1
1 , . . . ,g±1

n ∣ relations ⟩:

• Graph ↝ Cay (G ,{g1, . . . ,gn}) ∶= (V ,E),
• Vertices ↝ V ∶= G

• Edges ↝ E ∶= {(x ,g±1
i x) ∣ x ∈ G and i = 1, . . . ,n}.

. . .. . . Z = ⟨±2,±3⟩

. . .. . . Z = ⟨±1⟩

Proposition (classical)
The large scale geometry of the Cayley graph of G

does not depend on the generators

Goal: reproduce these constructions for inverse semigroups
i.e., construct ΛS undirected graph such that RS ≅ C∗

u (ΛS)

15
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Infinite distances, and why they are necessary

Remark: we need to consider extended metric spaces

Proposition (Lledó, M. - 2021)

Let x , y ∈ S , and d ∶S × S → [0,∞] be a distance.

(1) If d (x , y) < ∞ then Mx ,y ∈ C∗
u (S ,d)

(2) If x∗x ≠ y∗y then Mx ,y /∈ RS

Hence if x∗x ≠ y∗y then d (x , y) = ∞

Green’s relations:

• xLy if x∗x = y∗y
• xRy if xx∗ = yy∗

• H = L andR
• D = L ○R

D ⊂ S

D-class

● e1

● e2

● e3

● e4

H− classes

L − class of e3

R− class of e2

16
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Schützenberger graphs I: L-classes

Definition (Schützenberger - 1959)

Let S = ⟨K ⟩, where K = K∗. Given an L-class L ⊂ S , let ΛL be

• the graph whose vertices are the points of L and
• where x , y ∈ L are joined by a k-labeled edge if kx = y .

Likewise, let ΛS = ⊔e∈E(S)ΛLe .

"Algorithm":
●

●

Example: B ∶= ⟨a, a∗ ∣ a∗a = 1⟩
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Schützenberger graphs II: right invariance

Remark: not all graphs are Cayley graphs. However:

Theorem (Stephen - 1990)
{connected graphs} = {Schützenberger graphs}

Lemma (right invariance)

Let S = ⟨K ⟩. If x ∈ Ds∗s then d (x , sx) ≤ d (s∗s, s).
In particular, if xx∗ = s∗s then d (x , sx) = d (s∗s, s).

Proof/consequence:

●
s∗s

●
k1s
∗s
. . . . . . ● ●

s = k` . . . k1s
∗s

k1 k2 k`
Ls∗s

●
xx∗

. . . ● ●
sxx∗

k1 k2 k`
Lxx∗

●
x

. . . ● ●
sx

k1 k2 k`
Lx∗x

⋅xx∗ ⋅x

⋅x∗
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3. Coarse geometry of an inverse
semigroup

3.1. Finite labelings and uniform Roe
algebras



Finite labeling I: RS as a uniform Roe algebra

Proposition (Lledó, M. - 2021)

Let S = ⟨K ⟩. Then RS ⊂ C∗
u (ΛS).

Proof: generators of RS have finite propagation.

Warning: Sometimes RS ⊊ C∗
u (ΛS), e.g., S = (N,min) where

RS = c0 (N) ⊊ `∞ (N) = C∗
u (ΛS)

Key: for large r ≥ 0 /∃ F ⋐ S labeling the paths in ΛS of length r

●
1

<
1
2
3

⋮
k

k + 1
⋮

●
2

<

2
3

⋮
k

k + 1
⋮

●
3

<

3

⋮
k

k + 1
⋮

. . . . . . < ●
k

< ●
k + 1

< . . .

k

k + 1
⋮

k + 1
⋮

Dk = ∪s∈FDs∗s

●
1

< ●
2

< ●
3

< . . . . . . < ●
k
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Finite labeling II: a picture to top the explanation

Definition (Lledó, M. - 2021)

Let S = ⟨K ⟩. We say (S ,K) admits a finite labeling if
for any r ≥ 0 there is F ⋐ S such that if d (s∗s, s) ≤ r

then there is m ∈ F such that ms∗s = s.

Examples:
(1) Finitely generated semigroups
(2) F-inverse semigroups with ΛS of bounded geometry

Schützenberger
graphs of S

● e1

● e2

● e3

⋮

Cylinder of
radius r

F = shaded
area

20
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Finite labeling III: importance

Theorem (Lledó, M. - 2021)

(S ,K) admits a finite labeling ⇔ RS = `∞ (S) ⋊r S = C∗
u (ΛS).

Proof ⇒: take T ∈ C∗
u (ΛS) such that

prop (T ) = sup{d (x , y) ∣ ⟨δy ,T δx⟩ ≠ 0} = r < ∞

Choose F ⋐ S labeling all the r -paths in ΛS ↝ for all x , y ∈ S
with d (x , y) < r there is tx ,y ∈ F such that tx ,yx = y . Then

RS ∋ ∑
s∈F

ξsVs = T , where ξs (y) =
⎧⎪⎪⎨⎪⎪⎩

⟨δy ,T δs∗y ⟩ if s = ts∗y ,y

0 otherwise

Remark: somehow, the Theorem says that if (S ,K) is not FL
then maybe change your generating set K ...

Theorem (classical - for groups!)

For arbitrary groups: RG = `∞ (G) ⋊r G = C∗
u (G).

21
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3. Coarse geometry of an inverse
semigroup

3.2. Domain-measurability as a coarse
invariant



Domain-measurability in the Schützenberger graphs

Følner condition: s (Fn ∩Ds∗s) ↝ only moving in L-classes.

Therefore:
Domain-measurable ⇔ Schützenberger graphs have small growth:

Proposition (Lledó, M. - 2021)

Suppose S = ⟨K ⟩ admits a FL. S is domain-measurable iff
for every r , ε > 0 there is F ⋐ S such that ∣N +

r F ∣ ≤ (1 + ε) ∣F ∣.

S ⊃ Le e● F

N +
r F

↝ N +
r F ≈ε F

22
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Quasi-isometric invariance of domain-measurability

Theorem (Lledó, M. - 2021)
Let S and T be quasi-isometric and admitting finite labelings.

If T is domain-measurable then so is S .

Proof:

T

FTeT●
N +

r FT

φ
S

FS = φ−1 (FT )
N +

r ′FS

Remark: amenability is not a q.i. invariant:

• S = F2 ⊔ {0} and T = F2 ⊔ {1}
• φ∶S → T , where φ (ω) = ω and φ (0) = 1 is a q.i.

23
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3. Coarse geometry of an inverse
semigroup

3.3. Property A as a C*-property



Schützenberger graphs and property A

Definition (Yu - 1999)

(X ,d) has property A if for every r , ε > 0 there is
ξ∶X → `1 (X )+1 and c > 0 such that supp (ξx) ⊂ Bc (x) and

∣∣ξx − ξy ∣∣1 ≤ ε for every x , y ∈ X such that d (x , y) ≤ r .

Remarks:

• Property A generalizes amenability for groups (not in general)
• Non-property A groups are hard to come by

Theorem (Ozawa - 2000)
Let G be a countable group. The following are equivalent:

(1) G has property A.
(2) RG is a nuclear C*-algebra.
(3) C∗

r (G) is an exact C*-algebra.
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Property A, nuclearity and exactness for inverse semigroups

Theorem (Lledó, M. - 2021)

Let S = ⟨K ⟩. Consider:

(1) ΛS has property A (as a graph).
(2) RS is a nuclear C*-algebra.
(3) C∗

r (S) is an exact C*-algebra.

Then (1) ⇒ (2) ⇒ (3), and (3) ⇒ (1) when (S ,K) admits a FL.

Proof:

• Usual arguments for (1) ⇒ (2) ⇒ (3)
• Nuclearity = exactness for RS = C∗

u (ΛS) [Sako 2021]

Remark: (1) ⇒ (2) ↝ nuclearity does not pass to sub-algebras!
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4. The universal groupoid and its
amenability



Paterson’s universal groupoid and its amenability

Theorem (Paterson - 1999)

Given S there is GU (S)= {filters ofE (S)} ⋊θ S such that
C∗
r (S) = C∗

r (GU (S)) and C∗ (S) = C∗ (GU (S))

Recall: for arbitrary (discrete) groups:
G is amenable ⇔ C∗

r (G) is nuclear ⇔ C∗
r (G) = C∗ (G)

And this has become a driving force of groupoid amenability:

Theorem (Anantharaman-Delaroche and Renault)

An (étale) groupoid G is amenable ⇔ C∗
r (G) is nuclear.

Question:

• Relation between GU (S) amenable and S amenable?
• How does GU (S) enter the picture?
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Groupoid amenability vs domain-measurability

Question: relation between GU (S) amenable and S amenable?

Short answer: no relation, as

(1) S amenable/domain-measurable ↝ traces in RS

(2) GU (S) amenable ↝ nuclearity of C∗
r (S) ↝ nuclearity of RS

Examples:

(i) F2 ⊔ {0} is amenable but non-nuclear reduced C*-algebra
(Can also be done with a box space with a prop. (T) group)

(ii) C∗
r (F2 ⊔ {0}) ≠ C∗ (F2 ⊔ {0})

(iii) Nica gave a non-amenable semigroup with nuclear C*-algebra
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Groupoid amenability and property A

However, property A of ΛS ↝ exactness of C∗
r (S):

Proposition (Lledó, M. - 2021)

Let S = ⟨K ⟩ with (S ,K) admitting a finite labeling.
If GU (S) is amenable then ΛS has property A.

Proof: GU (S) amenable ⇔ C∗
r (S) = C∗

r (GU (S)) nuclear

⇒ C∗
r (S) exact ⇔ ΛS has prop. A

Remarks:

• Alternate argument via the definitions involved ↝ not C*
• Is not an equivalence, as F2 has prop. A and is not amenable
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5. Norm approximations and
quasi-diagonality



From QD to domain-measurability

Definition/Theorem (Voiculescu, based on Halmos)
A C*-algebra A is quasi-diagonal if there are u.c.p. maps

ϕn∶A→Mk(n) such that for all a,b ∈ A

∣∣ϕn (ab) − ϕn (a)ϕn (b)∣∣ → 0 and ∣∣ϕn (a)∣∣ → ∣∣a∣∣

Theorem (Ara, Lledó, M. - 2020)

If C∗
r (S) is quasi-diagonal then S is domain-measurable.
The reverse implication is false.

Sketch of proof:

As ∣∣ ⋅ ∣∣2 ≤ ∣∣ ⋅ ∣∣ ↝ QD is stronger than the previous 2-approx.
↝ dom. measurable = amenable trace = 2-norm approx.

(Any wk-* cluster point of {trk(n) ○ ϕn}n∈N gives a dom. measure)

Lastly, B = ⟨a, a∗ ∣ a∗a = 1⟩ is amenable but Vaa∗ ∼ 1 in C∗
r (B)
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Groupoid-TWW approach to going back

Goal: use algebraic properties of S ↝ prove quasi-diagonality.
There currently are two strategies:

(TWW) Nuclearity + UCT + faithful trace ⇒ C∗
r (S) is QD

(Alt) Exploit the inner structure of S

Unfortunately, (TWW) does not quite work in this context:

Proposition (M. - 2021)

Suppose GU (S) is minimal and C∗
r (S) stably finite.

If S is not a group then S is isomorphic to E ×H × E ⊔ {0},
where E ∶= E (S) ∖ {0} and H is a group.

Remarks:

• Minimality is needed to guarantee faithfulness of the trace.
• Stable finiteness follows from quasi-diagonality.
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Using D-classes to prove quasi-diagonality

Theorem (M. - 2021)
Suppose that:

(1) No D-class in S has infinitely many projections

(2) All the subgroups of S are amenable

Then C∗
r (S) is quasi-diagonal.

Very sketchy sketch of proof:

D ⊂ S

D-class

● e1

● e2

● e3

● e4

H− classes are
amenable groups

L − class of e3

R− class of e2

qD = ∑e,f ∈E(S)∩D WreVrf pHV
∗
rf
W ∗

re

= moved copies of pH
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6. Summary and future work



Summary

Day’s amenability:

• Split into dom.-measurable + localization ↝ forward dynamics.
• Dom.-measurable ↝ adequate Følner and paradoxicality.
• These measures characterize the (amenable) traces of RS .

Schützenberger graphs:

• Equipped S with a proper and right invariant metric
↝ distinguishes L-classes, but does not implement ≥

• Viewed RS as a crossed product and C∗
u (ΛS)

↝ modulo finite labelings (automatic for groups)
• Studied Følner sets geometrically, and prop. A in RS .

Groupoids, quasi-diagonality and related notions:

• Related this study with groupoid amenability
• Upgraded 2-norm approx. ↝ norm-approx. (in some cases)
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Future work

About metrics and property A:

• Unique proper and right invariant metric?
Role of the finite labelings? Do these appear?

• Semigroups without property A ↝ natural examples?
• Reproduce non-A metric spaces with semigroups.

Quasi-diagonality and norm approximations:

• Characterize quasi-diagonality of C∗
r (S) in terms of S .

Role of the UCT? Traces? Nuclearity (or exactness)?
• Exploit decomposition into D-classes and H-classes.
• For groups, compute explicit quasi-diagonal approximation.

Interesting C*-algebras and their semigroup counterparts:

• Study the coarse geometry of AF-monoids. Classifiable ones?
• Inverse semigroup equivalent of Z.
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7. Some extra slides



Semigroups and Day’s amenability

S semigroup ↝ binary and associative operation (s, t) ↦ st

Key idea: multiplication is not injective... maybe /∃ inverse s−1

s−1A ∶= {x ∈ S ∣ sx ∈ A} ↝ ss−1A ⊊ A ⊊ s−1s A

Definition (Day 1957)

S is amenable if there is a prob. measure µ∶ P (S) → [0,1]
such that µ (s−1A) = µ (A) for every s ∈ S and A ⊂ S

Examples:

• All amenable groups.
• 0 ∈ S ↝ µ ({0}) = 1.
• F2 ⊔ {1} is not amenable.
• S ∶= {a,b} where ab = aa = a and ba = bb = b is not amenable.

Questions: Følner condition? Paradoxical characterization? 35



Classical equivalences in semigroups

Note we have a choice to make:

F
sF

∣F ∖ sF ∣ ≤ ε ∣F ∣

∣sF ∖ F ∣ ≤ ε ∣F ∣

• In general ∣sF ∣ ≤ ∣F ∣
• ∣sF ∖ F ∣ ≤ ∣F ∖ sF ∣, and equality when ∣sF ∣ = ∣F ∣
• Warning: ∣sF ∣ small, and sF ∩ F = ∅ ⇒ ∣sF ∖ F ∣ small

(1) S satisfies the Følner condition if for every ε > 0 and K ⋐ S

there is F ⋐ S such that ∣sF ∖ F ∣ ≤ ε ∣F ∣ for every s ∈ K
(2) S satisfies the strong Følner condition if for every ε > 0 and

K ⋐ S there is F ⋐ S such that ∣F ∖ sF ∣ ≤ ε ∣F ∣ for every s ∈ K
36



Amenable, Følner and algebraic amenability

Theorem (many hands)
Let S be a semigroup. Consider:

(1) S has a strong Følner sequence
(2) S is amenable
(3) S has a Følner sequence
(4) CS is algebraically amenable

Then (1) ⇒ (2) ⇒ (3) ⇒ (4)

Proof: (1) ⇒ (2): µ(A) = limω ∣A ∩ Fn∣ / ∣Fn∣

(2) ⇒ (3): Namioka 1964, based on Følner 1957

(3) ⇒ (4): {Fn}n∈N is a Følner sequence then

dim (s CFn +CFn)
dim (CFn)

≤ dim (C (s Fn ∪ Fn))
dim (CFn)

= ∣s Fn ∪ Fn∣
∣Fn∣

n→∞ÐÐÐ→ 1
37



Reversing the classical equivalences

Remark: none of the reverse implications hold.

(2) /⇒ (1): Klawe 1977 ↝ right cancellative amenable semigroup
not strong Følner nor left cancellative

(3) /⇒ (2): as S = {a,b} is:

• Finite ↝ F ∶= S is a nice Følner set
• Not amenable: µ({a}) = µ(b−1{a}) = 0 = µ(a−1{b}) = µ({b})

(4) /⇒ (3): a bit more involved...

Example (Ara, Lledó, M. - 2020)

Consider F+2 = ⟨a,b⟩ ⊂ F2, and

α∶F+2 → End (N) , αa (n) = αb (n) =
⎧⎪⎪⎨⎪⎪⎩

n − 1 if n ≥ 1
0 if n = 0

Then N ⋊α F+2 is algebraically amenable but not Følner. 38



An argument for and against injectivity

All of the above differences boil down to ∣F ∣ ≠ ∣sF ∣

Definition: S is (left) cancellative if sx = sy then x = y

Nice behavior with cancellation:

• A = s−1sA
• ∣F ∣ = ∣sF ∣, and hence
• Strong Følner ⇔ amenable ⇔ Følner

Naughty behavior with cancellation:

• ss−1A ⊊ A
• Not a clear candidate for paradoxicality, as

/∃ t ∈ S such that t−1s−1A = A↝ S lacks the inverse of s

Solution: having sets Ds,i ⊂ S such that s ∶Ds,1 → Ds,2 is bijective,
and do everything up to these domains

39



Inverse semigroups and Wagner-Preston

Recall that the Wagner-Preston representation v ∶S → I (S) is

• Ds∗s ∶= {x ∈ S ∣ x = s∗sx} = s∗s ⋅ S is the domain of s∗s
• s ∶Ds∗s → Dss∗ , where x ↦ sx

S S

Dt∗t

Dtt∗t ⋅

Ds∗s

S

Dss∗

s ⋅

D(st)∗(st) = t∗ (Dtt∗ ∩Ds∗s)

D(st)(st)∗ =
s (Dtt∗ ∩Ds∗s)

st ⋅

This idea can be taken a bit further:
Definition (Sieben - 1997)
A representation of S on the discrete set X is a

homomorphism α∶S → I(X ), where s ↦ (αs ∶Ds∗s → Dss∗)
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Representations - and one example to contain them all

Recall: I(X ) = {(t,A,B) ∣ A,B ⊂ X and t ∶A↦ B is a bijection}

• In particular I (N) contains every countable inverse semigroup

• bijections
groups = partial bijections

inv. semigroups

• Idempotents e ∈ E (S) ↝ subsets of X

Remark: recall that if S = G is a group then

{actions α∶G → Perm (X )} ↔ {congruences in G}
↔ {normal subgroups N ⊂ G}

However, α∶S → I (X ) induces only a congruence on S

Warning: no clear notion of normal sub-semigroup
↝ no obvious description of {congruences on S}
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The type semigroup

Given α∶S → I (X ) consider the commutative monoid

Typ (α) ∶= ⟨[A] where A ⊂ X ⟩ subject to

(i) [∅] = 0
(ii) [A] = [αs (A)] whenever A ⊂ Ds∗s

(iii) [A ∪B] = [A] + [B] if A ∩B = ∅

Lastly, α,β ∈ Typ (α) then α ≤ β if α + γ = β for some γ ∈ Typ (α)

Lemma (Ara, Lledó, M. - 2020)

Let Typ (α) be as above, and let [A] , [B] ∈ Typ (α). Then

(1) If [A] ≤ [B] and [B] ≤ [A] then [A] = [B]
(2) If n ⋅ [A] = n ⋅ [B] for any n ∈ N then [A] = [B]
(3) If (n + 1) ⋅ [A] ≤ n ⋅ [A] for some n ∈ N then [A] = 2 ⋅ [A]

42



Classical equivalences renovated I

Theorem (Ara, Lledó, M. - 2020)

Let α∶S → I (X ) be an inverse semigroup. TFAE:

(1) X is domain-measurable.
(2) X is not paradoxical.
(3) X is domain-Følner.

(1) ⇒ (3): follow the algorithm:

• m (pB) ∶= µ (B) + extend by lineary and continuity
• m ∈ (`∞ (X ))∗ is a normalized functional
• Recall: {normal states} ⊂ (`∞ (X ))∗ are dense (weak-*)

Approximating m by normal states, and applying Namioka’s trick
↝ hλ ∈ `1 (X )+1 such that ∣∣s∗hλ − s∗shλ∣∣1 → 0

Some inner level set of hλ is a good enough Følner set.
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Classical equivalences renovated II

(1) ⇒ (2): if it was paradoxical then
2 = ∑n

i=1 µ (siAi) +∑m
j=1 µ (tjBj) = ∑n

i=1 µ (Ai) +∑m
j=1 µ (Bj)

= µ (A1 ⊔ ⋅ ⋅ ⋅ ⊔An ⊔B1 ⊔ ⋅ ⋅ ⋅ ⊔Bm) ≤ µ (X ) = 1

(2) ⇒ (1): note 2 ⋅ [X ] /≤ [X ] in Typ (α), and by the Lemma
(n + 1) ⋅ [X ] /≤ n ⋅ [X ] for any n ∈ N

Theorem (Tarski - 1929)

Let (T ,+) be a commutative monoid, with neutral element and
ε ∈ T . The following are equivalent:

(a) (n + 1) ⋅ ε /≤ n ⋅ ε for any n ∈ N
(b) There is a homo. ν∶ T → [0,∞] with ν (ε) = 1

Hence there is a homomorphism ν∶Typ (α) → [0,∞] with
ν ([X ]) = 1. Then µ (B) ∶= ν ([B]) is a domain-measure.
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The localization condition localized in time

The localization already appeared in previous work:

Theorem (Gray, Kambites - 2017)
Let S be a semigroup satisfying the Klawe condition. Then

S is amenable ⇔ there are Fn ⊂ S such that
∣sFn ∖ Fn∣ / ∣Fn∣ → 0 and ∣sFn∣ = ∣Fn∣

Fn can be found where s acts injectively ↝ Ds∗s

Indeed: if α = v ∶S → I (S), and S is amenable when Fn is
eventually within Ds∗s ↝ Fn ⊂ Ds∗s ⇒ ∣Fn∣ = ∣sFn∣
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Wagner-Preston case, or when X = S

Before: what happens when X = S and α = v ∶S → I (S)?

Consider the action of S given by:

• Es∗s = {f ∈ `∞ (S) ∣ supp (f ) ⊂ Ds∗s}
• For any f ∈ Es∗s consider (sf ) (x) ∶= f (s∗x) when x ∈ Dss∗

And construct `∞ (S) ⋊r S ⊂ B (`2S ⊗ `2S)

Proposition (Ara, Lledó, M. - 2020)

With the above notation: RS ≅ `∞ (S) ⋊r S

Proof: check that U (`∞ (S) ⋊r S)U∗ ≅ 1⊗RS ≅ Rs , where

U ∶ `2S ⊗ `2S → `2S ⊗ `2S , δx ⊗ δy ↦
⎧⎪⎪⎨⎪⎪⎩

δx ⊗ δyx if xx∗ = y∗y

0 otherwise
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All the traces of RS are amenable

Theorem (Ara, Lledó, M. - 2020)
There is a bijection between the domain-measures on X and the
traces of RX . In particular, all the traces of RX are amenable.

Proof: the map µ↦ τ ∶ B (`2X) EÐ→ `∞ (X ) mÐ→ C is a bijection:
→ τ is a trace (see above Theorem)
→ The map is bijective since:

Lemma (Ara, Lledó, M. - 2020)
All traces of RS factor under E , and hence m = E ○ τ is a mean.

Key point: if sx ≠ x for all x ∈ A ⊂ Ds∗s it can be 3-colored, i.e.,
A = B1 ⊔B2 ⊔B3 where sBi ∩Bi = ∅. Hence for every trace ϕ

ϕ (VspA) = ϕ (VspB1) + ϕ (VspB2) + ϕ (VspB3)
= ϕ (pB1VspB1) + ϕ (pB2VspB2) + ϕ (pB3VspB3) = 0
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Property A and nuclearity of RS

Theorem (Lledó, M. - 2021)
If ΛS has property A (as a graph) then RS is nuclear.

Note: this is based on a similar result for L-classes:

Proof: given a ξ∶X → `1 (X )+1 and c > 0 consider

ϕ∶RS → ∏
x∈S

MBc(x) ⊂ `
∞ (S)⊗Mk , where a ↦ (pBc(x) a pBc(x))x∈S

and

ψ∶ `∞ (S) ⊗Mk →RS , where (bx)x∈S ↦ ∑
x∈S

ξ∗x bxξx

with ξxδy ∶= ξy (x) δy gives a c.p.c. approximation of RS :

• Both ϕ and ψ are completely positive
• ∣∣fVs − ψ (ϕ (fVs))∣∣ ≤ ∣∣fVs ∣∣ ⋅ supy∈Ds∗s

∣1 − ⟨ξsy , ξy ⟩∣ ≤ ε
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E-unitary semigroups and relation with property A

Recall: G(S) = S/σ, where sσt iff se = te for some e ∈ E (S)

• Known as the maximal homomorphic image of S
• G(S) is always a group, and let σ∶S → G(S) the quotient map

Theorem (Duncan and Namioka - 1978)

S is amenable if, and only if, G(S) is amenable.

However: G(S) loses information of S ↝ might even G(S) = {1}

Definition (classical)

S is E-unitary if σ∶S → G(S) is injective in every L-class.

Theorem (Anantharaman-Delaroche - 2016)

Let S be E-unitary. C∗
r (S) is exact ⇔ G(S) is exact.
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E-unitary semigroups and relation with property A

Goal: prove Anantharaman-Delaroche’s result geometrically

Theorem (Lledó, M. - 2021)

Let S = ⟨K ⟩ be E-unitary and (S ,K) admit a finite labeling.
ΛS has property A ⇔ G(S) has property A.

(Recall that, by Ozawa, property A = exactness for groups)

Proof ⇒: given ξ∶S → `1 (S)1
+ for S let

ζ ∶G (S) → `1 (G (S)) , where ζσ(s) (σ (t)) ∶= lim
n→ω

ξsen (ten)

for some e1 ≥ ⋅ ⋅ ⋅ ≥ en ≥ ⋅ ⋅ ⋅ ∈ E (S) is eventually below everything

• Locally G(S) is ΛLe for e sufficiently small
• Hence, the same approx. for ΛS does the trick for G(S)

Proof ⇐: only known via C*-arguments
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Higson-Lafforgue-Skandalis and Willett’s example

Example: box space without property A
• F2 = ⟨a,b ∣ −⟩ free non-abelian group on 2 elements
• Let {Nk}k∈N be a descending sequence of normal subgroups

of finite index such that ∩k∈NNk = {1}
• S ∶= ⊔k∈NF2/Nk , where [g]i ⋅ [h]j ∶= [gh]min{i ,j}.

Remark:

(1) S is amenable ↝ as it has a 0
(2) S does not have property A ↝ L-classes are complicated
(3) S does not admit a finite labeling ↝ same as (N,min)

●
[e]0

F2/N0

●
[e]1

F2/N1≤

●
[e]2

F2/N2≤

●
[e]3

F2/N3≤

⋯
⋯

⋯

⋰

⋱

S =
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Paterson’s universal groupoid

Recall the construction of Paterson’s universal groupoid GU (S):

• Unit space GU (S)(0) ∶= {ξ ⊂ E (S) filter} ⊂ {0,1}E(S)

• Action of S : θs ∶Dθ
s∗s → Dθ

ss∗ , θs (ξ) = {e ≥ sfs∗}f ∈ξ
• Groupoid GU (S) = {[s, ξ] where s ∈ S and ξ ∈ Dθ

s∗s}
Subject to some germ-like equivalence relation...

• Operation: [t, θs (ξ)] ⋅ [s, ξ] = [ts, ξ]

Example: B = ⟨a, a∗ ∣ a∗a = 1⟩ then

• GU (B)(0) = E (S) ⊔ {∞} = N ⊔ {∞}
• GU (B)k = {[s, k]}s∗s≥aka∗k = {[aia∗j , k]}

j≤k
• GU (B)∞ = Z
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Groupoid amenability, nuclearity and weak containment

Theorem (Lance ’70s, for groups!)

G is amenable ⇔ C∗
r (G) is nuclear ⇔ C∗

r (G) = C∗ (G)

This has become a driving force of groupoid amenability:

Definition (Renault - 1980)
G (étale) is amenable if for any ε > 0 and compact K ⊂ G there is
a cont. compc. supported η∶G → [0,1] such that for all s ∈ K

∣1 −∑s(h)=r(g) η (h)∣ ≤ ε and ∑s(h)=r(g) ∣η (h) − η (hg)∣ ≤ ε

Question:

• Relation between GU (S) amenable and S amenable?
• How does GU (S) enter the picture?
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Groupoid amenability vs domain-measurability

Question: relation between GU (S) amenable and S amenable?

Short answer: no relation, as

(1) S amenable/domain-measurable ↝ traces in RS

(2) GU (S) amenable ↝ nuclearity of C∗
r (S) ↝ nuclearity of RS

Examples:

(i) F2 ⊔ {0} is amenable but non-nuclear reduced C*-algebra
(Can also be done with a box space with a prop. (T) group)

(ii) C∗
r (F2 ⊔ {0}) ≠ C∗ (F2 ⊔ {0})

(iii) Nica gave a non-amenable semigroup with nuclear C*-algebra
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