In preparation

Preprints

Accepted

  1. Y. C. Chung, D. Martínez and N. Szakács, Quasi-countable inverse semigroups as metric spaces, and the uniform Roe algebras of locally finite inverse semigroups, to appear in Groups, Geom. Dyn. (2024).
  2. A. Buss and D. Martínez, Approximation properties of Fell bundles over inverse semigroups and non-Hausdorff groupoids, Adv. Math. 431 (2023) 109251 (pp. 54) https://doi.org/10.1016/j.aim.2023.109251.
  3. D. Martínez, A note on the quasi-diagonality of inverse semigroup reduced C*-algebras, J. Op. Th. 90 (2023) (pp. 17) https://doi.org/10.7900/jot.2021nov29.2424.
  4. F. Lledó and D. Martínez, A note on commutation relations and finite dimensional approximations, Expo. Math. (2022) https://doi.org/10.1016/j.exmath.2022.08.004.
  5. F. Lledó and D. Martínez, The uniform Roe algebra of an inverse semigroup, J. Math. Anal. Appl. 499 (2021) 124996 (pp. 28) https://doi.org/10.1016/j.jmaa.2021.124996
  6. P. Ara, F. Lledó and D. Martínez, Amenability and paradoxicality in semigroups and C*-algebras, J. Func. Anal. 279 (2020) 108530 (pp. 43) https://doi.org/10.1016/j.jfa.2020.108530
  7. F. Lledó and D. Martínez, Notions of Infinity in Quantum Physics, In: Marmo G., Martín de Diego D., Muñoz Lecanda M. (eds) Classical and Quantum Physics. Springer Proceedings in Physics, vol 229. Springer, Cham (2019) (pp. 14) https://doi.org/10.1007/978-3-030-24748-5_14